Skip to main content

Add AWGN Directly to PSD in MATLAB

 

In general, we compute the power spectral density (PSD) of a noisy periodic signal. However, in this article, you will learn how to add noise directly to the PSD of a signal. This process is approximately equivalent to adding noise to a clean signal and then computing its PSD. Here, I will discuss both the theoretical background and the MATLAB implementation.

Steps

1. First, compute the Fast Fourier Transform (FFT) of the clean signal. Then, calculate the Power Spectral Density (PSD) from the FFT.

2. In our case, ensure that the PSD is in the linear scale. Next, compute the noise power from the given Signal-to-Noise Ratio (SNR) using:

    noise_power = signal power / linear SNR
    

3. Then, generate Additive White Gaussian Noise (AWGN) using the formula:

    AWGN noise = sqrt(noise_power) * randn
    

      where randn generates a Gaussian-distributed signal with a mean of 0 and a variance of 1.

 

MATLAB Code 

clc; clear; close all;

%% Define Parameters
fs = 1000; % Sampling frequency (Hz)
T = 0.2; % Time period of sine wave (s)
A = 1; % Amplitude
N = 1024; % Number of samples
t = linspace(-0.5, 0.5, N); % Time vector
f_sin = 5; % Frequency of sine wave (Hz)

%% Generate Periodic Sine Wave
sine_wave = A * sin(2 * pi * f_sin * t);

%% Compute PSD using FFT
Xf = fftshift(fft(sine_wave)); % Compute FFT and shift
PSD = abs(Xf).^2 / N; % Compute Power Spectral Density

%% Generate AWGN in Frequency Domain (Method 1)
snr_dB = 20; % SNR in dB
snr_linear = 10^(snr_dB/10); % Convert SNR to linear scale
signal_power = mean(PSD); % Approximate power of the original spectrum
noise_power = signal_power / snr_linear; % Compute noise power
noise_spectrum = sqrt(noise_power) .* (randn(size(PSD)) + 1j*randn(size(PSD))); % AWGN

%% Add AWGN Directly to PSD
noisy_PSD = PSD + abs(noise_spectrum).^2; % Add noise power to PSD

%% Generate AWGN in Time Domain (Method 2)
noise_time = sqrt(noise_power) * randn(size(sine_wave)); % AWGN in time domain
noisy_sine = sine_wave + noise_time; % Add noise to signal

%% Compute PSD of Noisy Sine Wave
Xf_noisy = fftshift(fft(noisy_sine)); % Compute FFT of noisy signal
PSD_noisy = abs(Xf_noisy).^2 / N; % Compute Power Spectral Density

%% Plot Results
freq = linspace(-fs/2, fs/2, N); % Frequency axis

figure;

% Plot Time-Domain Sine Wave
subplot(3,1,1);
plot(t, sine_wave, 'b', 'LineWidth', 1.5); hold on;
plot(t, noisy_sine, 'r', 'LineWidth', 1.2);
xlabel('Time (s)');
ylabel('Amplitude');
title('Sine Wave Before and After AWGN');
legend('Original Sine Wave', 'Noisy Sine Wave');
grid on;

% Plot PSD Comparison (Direct AWGN to PSD)
subplot(3,1,2);
plot(freq, 10*log10(PSD + eps), 'b', 'LineWidth', 1.5); hold on;
plot(freq, 10*log10(noisy_PSD + eps), 'r', 'LineWidth', 1.5);
xlabel('Frequency (Hz)');
ylabel('Power Spectral Density (dB)');
title('AWGN Added Directly to PSD');
legend('Original PSD', 'PSD with Direct AWGN');
grid on;

% Plot PSD Comparison (AWGN in Time Domain)
subplot(3,1,3);
plot(freq, 10*log10(PSD + eps), 'b', 'LineWidth', 1.5); hold on;
plot(freq, 10*log10(PSD_noisy + eps), 'g', 'LineWidth', 1.5);
xlabel('Frequency (Hz)');
ylabel('Power Spectral Density (dB)');
title('PSD: Original vs. PSD from Noisy Sine Wave');
legend('Original PSD', 'PSD from Noisy Signal');
grid on;

Output

 





Copy the MATLAB Code from here 

 

Further Reading 

  1. Periodogram in MATLAB

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Formula for BER: BER=Q(...

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

OFDM in MATLAB

  MATLAB Script % The code is written by SalimWireless.Com 1. Initialization clc; clear all; close all; 2. Generate Random Bits % Generate random bits numBits = 100; bits = randi([0, 1], 1, numBits); 3. Define Parameters % Define parameters numSubcarriers = 4; % Number of subcarriers numPilotSymbols = 3; % Number of pilot symbols cpLength = ceil(numBits / 4); % Length of cyclic prefix (one-fourth of the data length) 4. Add Cyclic Prefix % Add cyclic prefix dataWithCP = [bits(end - cpLength + 1:end), bits]; 5. Insert Pilot Symbols % Insert pilot symbols pilotSymbols = ones(1, numPilotSymbols); % Example pilot symbols (could be any pattern) dataWithPilots = [pilotSymbols, dataWithCP];   6. Perform OFDM Modulation (IFFT) % Perform OFDM modulation (IFFT) dataMatrix = reshape(dataWithPilots, numSubcarriers, []); ofdmSignal = ifft(dataMatrix, numSubcarriers); ofdmSignal = reshape(ofdmSignal, 1, []); 7. Display the Generated Data % Display the generated data disp("Original Bits:"); ...

Why is Time-bandwidth Product Important?

Time-Bandwidth Product (TBP) The time-bandwidth product (TBP) is defined as: TBP = Δ f ⋅ Δ t Δf (Bandwidth) : The frequency bandwidth of the signal, representing the range of frequencies over which the signal is spread. Δt (Time duration) : The duration for which the signal is significant, i.e., the time interval during which the signal is non-zero. The TBP is a measure of the "spread" of the signal in both time and frequency domains. A higher TBP means the signal is both spread over a larger time period and occupies a wider frequency range.     To calculate the period of a signal with finite bandwidth, Heisenberg’s uncertainty principle plays a vital role where the time-bandwidth product indicates the processing gain of the signal. We apply spread spectrum techniques in wireless communication for various reasons, such as interference resili...