Skip to main content

Add AWGN Directly to PSD in MATLAB

 

In general, we compute the power spectral density (PSD) of a noisy periodic signal. However, in this article, you will learn how to add noise directly to the PSD of a signal. This process is approximately equivalent to adding noise to a clean signal and then computing its PSD. Here, I will discuss both the theoretical background and the MATLAB implementation.

Steps

1. First, compute the Fast Fourier Transform (FFT) of the clean signal. Then, calculate the Power Spectral Density (PSD) from the FFT.

2. In our case, ensure that the PSD is in the linear scale. Next, compute the noise power from the given Signal-to-Noise Ratio (SNR) using:

    noise_power = signal power / linear SNR
    

3. Then, generate Additive White Gaussian Noise (AWGN) using the formula:

    AWGN noise = sqrt(noise_power) * randn
    

      where randn generates a Gaussian-distributed signal with a mean of 0 and a variance of 1.

 

MATLAB Code 

clc; clear; close all;

%% Define Parameters
fs = 1000; % Sampling frequency (Hz)
T = 0.2; % Time period of sine wave (s)
A = 1; % Amplitude
N = 1024; % Number of samples
t = linspace(-0.5, 0.5, N); % Time vector
f_sin = 5; % Frequency of sine wave (Hz)

%% Generate Periodic Sine Wave
sine_wave = A * sin(2 * pi * f_sin * t);

%% Compute PSD using FFT
Xf = fftshift(fft(sine_wave)); % Compute FFT and shift
PSD = abs(Xf).^2 / N; % Compute Power Spectral Density

%% Generate AWGN in Frequency Domain (Method 1)
snr_dB = 20; % SNR in dB
snr_linear = 10^(snr_dB/10); % Convert SNR to linear scale
signal_power = mean(PSD); % Approximate power of the original spectrum
noise_power = signal_power / snr_linear; % Compute noise power
noise_spectrum = sqrt(noise_power) .* (randn(size(PSD)) + 1j*randn(size(PSD))); % AWGN

%% Add AWGN Directly to PSD
noisy_PSD = PSD + abs(noise_spectrum).^2; % Add noise power to PSD

%% Generate AWGN in Time Domain (Method 2)
noise_time = sqrt(noise_power) * randn(size(sine_wave)); % AWGN in time domain
noisy_sine = sine_wave + noise_time; % Add noise to signal

%% Compute PSD of Noisy Sine Wave
Xf_noisy = fftshift(fft(noisy_sine)); % Compute FFT of noisy signal
PSD_noisy = abs(Xf_noisy).^2 / N; % Compute Power Spectral Density

%% Plot Results
freq = linspace(-fs/2, fs/2, N); % Frequency axis

figure;

% Plot Time-Domain Sine Wave
subplot(3,1,1);
plot(t, sine_wave, 'b', 'LineWidth', 1.5); hold on;
plot(t, noisy_sine, 'r', 'LineWidth', 1.2);
xlabel('Time (s)');
ylabel('Amplitude');
title('Sine Wave Before and After AWGN');
legend('Original Sine Wave', 'Noisy Sine Wave');
grid on;

% Plot PSD Comparison (Direct AWGN to PSD)
subplot(3,1,2);
plot(freq, 10*log10(PSD + eps), 'b', 'LineWidth', 1.5); hold on;
plot(freq, 10*log10(noisy_PSD + eps), 'r', 'LineWidth', 1.5);
xlabel('Frequency (Hz)');
ylabel('Power Spectral Density (dB)');
title('AWGN Added Directly to PSD');
legend('Original PSD', 'PSD with Direct AWGN');
grid on;

% Plot PSD Comparison (AWGN in Time Domain)
subplot(3,1,3);
plot(freq, 10*log10(PSD + eps), 'b', 'LineWidth', 1.5); hold on;
plot(freq, 10*log10(PSD_noisy + eps), 'g', 'LineWidth', 1.5);
xlabel('Frequency (Hz)');
ylabel('Power Spectral Density (dB)');
title('PSD: Original vs. PSD from Noisy Sine Wave');
legend('Original PSD', 'PSD from Noisy Signal');
grid on;

Output

 





Copy the MATLAB Code from here 

 

Further Reading 

  1. Periodogram in MATLAB

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to add...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The r...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the vari...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...