Skip to main content

Add AWGN Directly to PSD in MATLAB

 

In general, we compute the power spectral density (PSD) of a noisy periodic signal. However, in this article, you will learn how to add noise directly to the PSD of a signal. This process is approximately equivalent to adding noise to a clean signal and then computing its PSD. Here, I will discuss both the theoretical background and the MATLAB implementation.

Steps

1. First, compute the Fast Fourier Transform (FFT) of the clean signal. Then, calculate the Power Spectral Density (PSD) from the FFT.

2. In our case, ensure that the PSD is in the linear scale. Next, compute the noise power from the given Signal-to-Noise Ratio (SNR) using:

    noise_power = signal power / linear SNR
    

3. Then, generate Additive White Gaussian Noise (AWGN) using the formula:

    AWGN noise = sqrt(noise_power) * randn
    

      where randn generates a Gaussian-distributed signal with a mean of 0 and a variance of 1.

 

MATLAB Code 

clc; clear; close all;

%% Define Parameters
fs = 1000; % Sampling frequency (Hz)
T = 0.2; % Time period of sine wave (s)
A = 1; % Amplitude
N = 1024; % Number of samples
t = linspace(-0.5, 0.5, N); % Time vector
f_sin = 5; % Frequency of sine wave (Hz)

%% Generate Periodic Sine Wave
sine_wave = A * sin(2 * pi * f_sin * t);

%% Compute PSD using FFT
Xf = fftshift(fft(sine_wave)); % Compute FFT and shift
PSD = abs(Xf).^2 / N; % Compute Power Spectral Density

%% Generate AWGN in Frequency Domain (Method 1)
snr_dB = 20; % SNR in dB
snr_linear = 10^(snr_dB/10); % Convert SNR to linear scale
signal_power = mean(PSD); % Approximate power of the original spectrum
noise_power = signal_power / snr_linear; % Compute noise power
noise_spectrum = sqrt(noise_power) .* (randn(size(PSD)) + 1j*randn(size(PSD))); % AWGN

%% Add AWGN Directly to PSD
noisy_PSD = PSD + abs(noise_spectrum).^2; % Add noise power to PSD

%% Generate AWGN in Time Domain (Method 2)
noise_time = sqrt(noise_power) * randn(size(sine_wave)); % AWGN in time domain
noisy_sine = sine_wave + noise_time; % Add noise to signal

%% Compute PSD of Noisy Sine Wave
Xf_noisy = fftshift(fft(noisy_sine)); % Compute FFT of noisy signal
PSD_noisy = abs(Xf_noisy).^2 / N; % Compute Power Spectral Density

%% Plot Results
freq = linspace(-fs/2, fs/2, N); % Frequency axis

figure;

% Plot Time-Domain Sine Wave
subplot(3,1,1);
plot(t, sine_wave, 'b', 'LineWidth', 1.5); hold on;
plot(t, noisy_sine, 'r', 'LineWidth', 1.2);
xlabel('Time (s)');
ylabel('Amplitude');
title('Sine Wave Before and After AWGN');
legend('Original Sine Wave', 'Noisy Sine Wave');
grid on;

% Plot PSD Comparison (Direct AWGN to PSD)
subplot(3,1,2);
plot(freq, 10*log10(PSD + eps), 'b', 'LineWidth', 1.5); hold on;
plot(freq, 10*log10(noisy_PSD + eps), 'r', 'LineWidth', 1.5);
xlabel('Frequency (Hz)');
ylabel('Power Spectral Density (dB)');
title('AWGN Added Directly to PSD');
legend('Original PSD', 'PSD with Direct AWGN');
grid on;

% Plot PSD Comparison (AWGN in Time Domain)
subplot(3,1,3);
plot(freq, 10*log10(PSD + eps), 'b', 'LineWidth', 1.5); hold on;
plot(freq, 10*log10(PSD_noisy + eps), 'g', 'LineWidth', 1.5);
xlabel('Frequency (Hz)');
ylabel('Power Spectral Density (dB)');
title('PSD: Original vs. PSD from Noisy Sine Wave');
legend('Original PSD', 'PSD from Noisy Signal');
grid on;

Output

 





Copy the MATLAB Code from here 

 

Further Reading 

  1. Periodogram in MATLAB

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Understanding the Q...

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems clc; clear; close all; %% Parameters Nt = 4; % Transmit antennas Nr = 4; % Receive antennas (must be >= Nt for ZFBF) numBits = 1e4; % Number of bits per stream SNRdB = 0; % SNR in dB numRuns = 100; % Number of independent runs for averaging %% Precompute noise standard deviation noiseSigma = 10^(-SNRdB / 20); %% Accumulator for total errors totalErrors = 0; for run = 1:numRuns % Generate random bits: [4 x 10000] bits = randi([0 1], Nt, numBits); % BPSK modulation: 0 → +1, 1 → -1 txSymbols = 1 - 2 * bits; % Rayleigh channel matrix: [4 x 4] H = (randn(Nr, Nt) + 1j * randn(Nr, Nt)) / sqrt(2); %% === Zero Forcing Beamforming at Transmitter === W_zf = pinv(H); % Precoding matrix: [Nt x Nr] txPrecoded = W_zf * txSymbols; % Apply ZF precoding % Normalize transmit power (optional but useful) txPrecoded = txPrecoded / sqrt(mean(abs(txPrecoded(:)).^2)); %% Channel transmission with AWGN noise = noiseSigma * (randn(...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diffe...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); ...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)}  Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). Total number of samples (N): The number of samples in the time-domain signal used for the DFT/FFT.   Suppose:    ...