Skip to main content

Privacy Policy

 Privacy Policy for Salim Wireless!


Who we are:


Our website address is https://www.salimwireless.com


What personal data we collect and why we collect it:


1. Comments:


When visitors leave comments on the site we collect the data shown in the comments form, and also the visitor’s IP address and browser user agent string to help spam detection.


An anonymized string created from your email address (also called a hash) may be provided to the Gravatar service to see if you are using it. The Gravatar service privacy policy is available here: https://automattic.com/privacy/. After approval of your comment, your profile picture is visible to the public in the context of your comment.


2. Media:


If you upload images to the website, you should avoid uploading images with embedded location data (EXIF GPS) included. Visitors to the website can download and extract any location data from images on the website.


3. Contact Forms & Cookies:


If you leave a comment on our site you may opt-in to save your name, email address and website in cookies. These are for your convenience so that you do not have to fill in your details again when you leave another comment. These cookies will last for one year.


If you have an account and you log in to this site, we will set a temporary cookie to determine if your browser accepts cookies. This cookie contains no personal data and is discarded when you close your browser.


When you log in, we will also set up several cookies to save your login information and your screen display choices. Login cookies last for two days, and screen options cookies last for a year. If you select “Remember Me”, your login will persist for two weeks. If you log out of your account, the login cookies will be removed.


If you edit or publish an article, an additional cookie will be saved in your browser. This cookie includes no personal data and simply indicates the post ID of the article you just edited. It expires after 1 day.


4. Embedded Content From Other Websites:


Articles on this site may include embedded content (e.g. videos, images, articles, etc.). Embedded content from other websites behaves in the exact same way as if the visitor has visited the other website.


These websites may collect data about you, use cookies, embed additional third-party tracking, and monitor your interaction with that embedded content, including tracking your interaction with the embedded content if you have an account and are logged in to that website.


5. Analytics- How long we retain your data:


If you leave a comment, the comment and its metadata are retained indefinitely. This is so we can recognize and approve any follow-up comments automatically instead of holding them in a moderation queue.


For users that register on our website (if any), we also store the personal information they provide in their user profile. All users can see, edit, or delete their personal information at any time (except they cannot change their username). Website administrators can also see and edit that information.


6. What rights you have over your data:


If you have an account on this site or have left comments, you can request to receive an exported file of the personal data we hold about you, including any data you have provided to us. You can also request that we erase any personal data we hold about you. This does not include any data we are obliged to keep for administrative, legal, or security purposes.


7. Where we send your data:


Visitor comments may be checked through an automated spam detection service.


8. Compliance With Children’s Online Privacy Protection Act:


Protecting the privacy of the very young is especially important. For that reason, we never collect or maintain information at our Site from those we actually know are under 13, and no part of our website is structured to attract anyone under 13.


9. Your Acceptance Of These Terms:


By using this site, you signify your acceptance of this policy and terms of service. If you do not agree to this policy, please do not use our Site. Your continued use of the Site following the posting of changes to this policy will be deemed your acceptance of those changes.


Contact information:


If you face any problem with the contents or the site, feel free to write us at iamsalim002@gmail.com


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Hybrid Beamforming | Page 2

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | clear all; close all; clc; Nt = 64; Nr = 16; NtRF = 4; NrRF = 4; At both the transmitter and receiver ends, there are four RF chains only for a hybrid beamforming system. Alternatively, every 16 antenna elements on the transmitter side is connected to a single RF chain, while every 4 antenna elements on the receiver side are connected to a single RF chain. Mixers, amplifiers, and other critical wireless communication components make up the RF chain. Now, in the case of hybrid beamforming, there can be four different data streams between the transmitter and receiver, as both sides have four RF chains, each of which is accountable for a separate data stream. For Analog Beamforming: All 64 Tx antenna elements create a beam or focus the resultant correlated signal spread from adjacent antennas to a particular direction. Similarly, it may be used for beam...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Theoretical BER vs SNR for binary ASK and FSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical Ber vs SNR for Amplitude Shift Keying (ASK) The theoretical bit error rate (BER) for binary Amplitude Shift Keying (ASK) as a function of the signal-to-noise ratio (SNR) can be derived using the following expression: If we map the binary signals to 1 and -1 in ASK , the probability of bit error will be: BER = Q(√(2*SNR))   If we map the binary signals to 0 and 1 in ASK , the probability of bit error will be:    BER = Q(√(SNR/2))   Where: Q(x) is the Q-function, which is the tail probability of the standard normal distribution. SNR is the signal-to-noise ratio. N0 is the noise power spectral density. Where Q is the Q function In mathematics Q(x) = 0.5 * erfc(x/ √ 2)   Calculate the Probability of Error using Q-function for ASK: For ASK with amplitudes 0 and 1 : When bit '0' is transmitted, the received signal is noise only . When bit '1' is transmitted, the re...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diff...

Constellation Diagram of FSK in Detail

📘 Overview 🧮 Simulator for constellation diagram of FSK 🧮 Theory 🧮 MATLAB Code 📚 Further Reading   Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK) . Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel. Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'. Simulator for 2-FSK Constellation Diagram Simulator for 2-FSK Constellation Diagram SNR (dB): ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems clc; clear; close all; %% Parameters Nt = 4; % Transmit antennas Nr = 4; % Receive antennas (must be >= Nt for ZFBF) numBits = 1e4; % Number of bits per stream SNRdB = 0; % SNR in dB numRuns = 100; % Number of independent runs for averaging %% Precompute noise standard deviation noiseSigma = 10^(-SNRdB / 20); %% Accumulator for total errors totalErrors = 0; for run = 1:numRuns % Generate random bits: [4 x 10000] bits = randi([0 1], Nt, numBits); % BPSK modulation: 0 → +1, 1 → -1 txSymbols = 1 - 2 * bits; % Rayleigh channel matrix: [4 x 4] H = (randn(Nr, Nt) + 1j * randn(Nr, Nt)) / sqrt(2); %% === Zero Forcing Beamforming at Transmitter === W_zf = pinv(H); % Precoding matrix: [Nt x Nr] txPrecoded = W_zf * txSymbols; % Apply ZF precoding % Normalize transmit power (optional but useful) txPrecoded = txPrecoded / sqrt(mean(abs(txPrecoded(:)).^2)); %% Channel transmission with AWGN noise = noiseSigma * (randn(...