Skip to main content

Theoretical BER vs SNR for binary ASK and FSK


Theoretical Ber vs SNR for Amplitude Shift Keying (ASK)

The theoretical bit error rate (BER) for binary Amplitude Shift Keying (ASK) as a function of the signal-to-noise ratio (SNR) can be derived using the following expression:

If we map the binary signals to 1 and -1 in ASK, the probability of bit error will be:

BER = Q(√(2*SNR))
 
If we map the binary signals to 0 and 1 in ASK, the probability of bit error will be:
 
 BER = Q(√(SNR/2))
 
Where:
Q(x) is the Q-function, which is the tail probability of the standard normal distribution.
SNR is the signal-to-noise ratio.
N0 is the noise power spectral density.

Where Q is the Q function
In mathematics Q(x) = 0.5 * erfc(x/2)
 

Calculate the Probability of Error using Q-function for ASK:

For ASK with amplitudes 0 and 1:

  • When bit '0' is transmitted, the received signal is noise only.

  • When bit '1' is transmitted, the received signal is 1 + noise.

  • The receiver makes a decision at the threshold 0.5.

  • If bit 0 is transmitted, noise must exceed +0.5.

  • If bit 1 is transmitted, noise must decrease the signal below 0.5.
  • In either case, the noise is Gaussian with mean = 0 and variance = N0/2. The probability of noise exceeding ±0.5 can be calculated with the Q-function:

    Pb = Q(0.5/ฯƒ)

    Where:

    ฯƒ = √(0.5/2)

    So:

    Pb = Q(0.5/√(N0/2)) = Q(√(2(0.5)2/N0))

    Since:

    SNR = (0.5)2 / N0

    We get:

    Pb = Q(√(SNR/2))

     

    Theoretical BER vs SNR for Frequency Shift Keying (FSK)

    Formulae for bit error rate (BER) of binary FSK is 

    BER = Q(√(SNR))
     
    Where Q is the Q function
    In mathematics Q(x) = 0.5 * erfc(x/2)

    So, theoretical BER for binary FSK will be
    Where:
    Q(x) is the Q-function.
    Eb is the energy per bit. 
    N0 is the noise power spectral density.
    erfc(x) is the complementary error function.



     

     Fig: Theoretical BER vs SNR for Binary ASK Modulation

     

      

      Fig: Theoretical BER vs SNR for Binary FSK Modulation


    Similarities:

    For both ASK and BFSK, the BER decreases as the SNR increases, indicating better performance at higher SNR values.
    The formulas for BER in both cases involve the complementary error function, indicating that they follow similar trends, though the constants and scaling factors differ slightly.

     

    MATLAB Code for theoretical BER vs SNR for BASK



    MATLAB Code for theoretical BER vs SNR for BFSK



    Also read about

    People are good at skipping over material they already know!

    View Related Topics to







    Admin & Author: Salim

    s

      Website: www.salimwireless.com
      Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
      Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
      Possess M.Tech in Electronic Communication Systems.


    Contact Us

    Name

    Email *

    Message *

    Popular Posts

    Constellation Diagrams of M-ary QAM | M-ary Modulation

    ๐Ÿ“˜ Overview of QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Online Simulator for M-ary QAM Constellations ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of QAM configurations ... ๐Ÿงฎ MATLAB Code for 4-QAM ๐Ÿงฎ MATLAB Code for 16-QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM ๐Ÿงฎ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike this, the M-ary PSK signal is modulated with a different phase-shifted version of the carrier signal and varying amplitude levels. Let me give an example for better comprehension. QAM = ASK +...

    Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

    ๐Ÿ“˜ Overview ๐Ÿงฎ Baseband and Passband Implementations of ASK, FSK, and PSK ๐Ÿงฎ Difference betwen baseband and passband ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Baseband and Passband ... ๐Ÿงฎ Baseband modulation techniques ๐Ÿงฎ Passband modulation techniques   Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise...

    BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

    ๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

    Comparisons among ASK, PSK, and FSK | And the definitions of each

    ๐Ÿ“˜ Comparisons among ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for calculating Bandwidth of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on Comparisons among ASK, PSK, and FSK ... ๐Ÿงฎ Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

    Constellation Diagrams of ASK, PSK, and FSK

    ๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

    Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

    ๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for calculating BER ๐Ÿงฎ MATLAB Codes for calculating theoretical BER ๐Ÿงฎ MATLAB Codes for calculating simulated BER ๐Ÿ“š Further Reading   BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is...

    MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

    ๐Ÿ“˜ Overview & Theory of Pulse Amplitude Moduation (PAM) ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal ๐Ÿงฎ Simulation results for comparison of PAM, PWM, PPM, DM, and PCM ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Pulse Amplitude Modulation ... ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM)   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with per...

    Coherence Bandwidth and Coherence Time

    ๐Ÿงฎ Coherence Bandwidth ๐Ÿงฎ Coherence Time ๐Ÿงฎ Coherence Time Calculator ๐Ÿงฎ Relationship between Coherence Time and Delay Spread ๐Ÿงฎ MATLAB Code to find Relationship between Coherence Time and delay Spread ๐Ÿ“š Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...