Skip to main content

Coherence Bandwidth and Coherence Time


 

Coherence Bandwidth

Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics.

coherence bandwidth is The inverse of Doppler spread delay time, or any spread delay time due to fading in general. The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae:

Coherence bandwidth = 1/(delay spread time)

Or, Coherence Bandwidth = 1/(root-mean-square delay spread time)

(Coherence bandwidth in Hertz)

For instance, the coherence bandwidth is 2 MHz when the delay spread is {1/(2*10^6)} = 500 ns in a household indoor environment.


For narrowband approximation,

Coherence Bandwidth = 1/root-mean-square delay spread time


Coherence bandwidth is a measure of the frequency spread over which a wireless communication channel behaves approximately like a flat fading channel. In other words, it's the bandwidth over which the channel's frequency response remains relatively constant. Coherence bandwidth is a crucial parameter in the design of wireless communication systems, particularly for systems that employ frequency-selective fading channel models.

 

Frequency Auto-correlation Function

The frequency auto-correlation function RH(Δf) of the channel transfer function H(f) is defined as: 


RH(Δf) = E{H(f)H∗(f+Δf)}


E{⋅} denotes the expectation operator, and H*(t) is the complex conjugate of H(t).


Coherence Bandwidth Definition

The coherence bandwidth is often defined as the frequency separation Δf over which the auto-correlation function RH(Δf) drops to a certain fraction of its maximum value, typically 0.5 or 1/e


Bc≈1/5*Tm


Where Tm is the root-mean-square delay spread time, which characterizes the extent of multi-path propagation.

 

 

Coherence Time

Coherence time, in the context of wireless communication, is a fundamental concept related to the temporal properties of wireless channels. It represents the duration for which the channel conditions remain approximately constant. In other words, it's the amount of time during which the wireless channel's characteristics, including phase, amplitude, and delay, can be considered relatively stable.

The relationship between coherence time and coherence bandwidth depends on the specific characteristics of the wireless channel and can vary from one scenario to another. In some cases, you may find that they are inversely related, meaning that a wider coherence bandwidth corresponds to a shorter coherence time and vice versa. However, this relationship is not a strict rule, and the actual values of coherence time and coherence bandwidth depend on the specific channel conditions and environment.
The coherence time and coherence bandwidth are related but not simply inversely proportional to each other. They are both important parameters for characterizing the time and frequency variations in wireless channels, and their values can vary depending on the specific channel properties and circumstances.
 

Time Auto-correlation Function

The time auto-correlation function RH(Δt) of the channel impulse response h(t) is defined as: 

RH(Δt)=E{h(t)h∗(t+Δt)}

E{⋅} denotes the expectation operator, and h∗(t) is the complex conjugate of h(t).

Coherence Time Definition

The coherence time is often defined as the time lag Δt over which the auto-correlation function RH(Δt) drops to a certain fraction of its maximum value, typically 0.5 or 1/e
 

Tc≈1/(fD)

Where fD is the Doppler spread, which characterizes the rate of change of the channel due to relative motion. 

For example, if a vehicle is moving at 30 m/s and the carrier frequency is 2 GHz:

Then, doppler spread, fD = v*f/c= (30 * 2 * 10^9) / (3 * 10^8) = 200 Hz

So, coherence time using the general approximation is 1/(200) = 5.02 ms (approx)
 
 

 

MATLAB Code to find Coherence Time and Coherence Bandwidth

 

Output

Coherence Bandwidth: 498867.5012 Hz
Coherence Time: 2.0045e-06 seconds

 

 
 
Fig 1: PSD of the generated frequency components

Relationship between Coherence Time and Delay Spread

The coherence time of a wireless channel is related to its delay spread. Delay spread refers to the time difference between the arrival of the first and last significant multipath components of a signal. Coherence time represents the time over which the channel's impulse response remains relatively constant, and it's inversely proportional to the delay spread.

The relationship between coherence time (Tc) and delay spread (Td​) can be approximated using the formula:

Tc≈1/β⋅Td​

where β is a factor depending on the specific characteristics of the wireless environment, typically ranging from 2 to 4.

 

MATLAB Code to find Relationship between Coherence Time and delay Spread 


 

Output

Coherence Time: 333333.3333 seconds

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to add...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) 📘 Overview & Theory 📘 How does the channel impulse response affect the signal? 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ(...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Drone Detection via Low Complexity Zadoff-Chu Sequence Root Estimation

Summary Based on  Yeung, 2025:  Yeung, C.K.A., Lo, B.F. and Torborg, S. Drone detection via low complexity zadoff-chu sequence root estimation. In 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC) (pp. 1-4). IEEE, 2020, January.   The rise in drone usage—from agriculture and delivery to surveillance and racing—has introduced major privacy and security challenges. Modern drones often use OFDM (Orthogonal Frequency Division Multiplexing) with Zadoff-Chu (ZC) sequences for synchronization. While powerful, detecting these sequences blindly (without knowing their parameters) remains a challenge. Aim This article presents a low-complexity solution to blindly detect ZC sequences used by unknown drones. The approach uses a novel double differential method that works without large correlation banks, making it efficient and real-time capable. ZC Sequence Fundamentals A ZC sequence of prime length P and roo...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the vari...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for ...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Understanding the Q...