Skip to main content

Why is Time-bandwidth Product (TBP) Important?



Time-Bandwidth Product (TBP)

The time-bandwidth product (TBP) is defined as:

TBP = ฮ”f ฮ”t
  • ฮ”f (Bandwidth): The frequency bandwidth of the signal, representing the range of frequencies over which the signal is spread.
  • ฮ”t (Time duration): The duration for which the signal is significant, i.e., the time interval during which the signal is non-zero.

The TBP is a measure of the "spread" of the signal in both time and frequency domains. A higher TBP means the signal is both spread over a larger time period and occupies a wider frequency range.

 

 

To calculate the period of a signal with finite bandwidth, Heisenberg’s uncertainty principle plays a vital role where the time-bandwidth product indicates the processing gain of the signal.

We apply spread spectrum techniques in wireless communication for various reasons, such as interference resilience, security, robustness in multipath, etc. But in spread spectrum techniques, we compromise some bandwidth. 

The time-bandwidth product for Gaussian-shaped pulses is 0.44 (approx.).

If the time-bandwidth product of a signal is >> 1, then the signal bandwidth (B) is much greater than what is required for transmitting the data rate (Rb​). . So, in this case, we are unable to utilize the whole available bandwidth. For this case, spectrum efficiency will be less.

To your knowledge, the product of the variance of time and variance of bandwidth for a Gaussian signal is 0.25, and for a triangular-shaped signal, it is 0.3. 


Example

 Time-Bandwidth Product for a raise cosine filter

Let’s assume we have designed a raised cosine filter with a roll-off factor of 0.25. The symbol rate for transmission is 100 symbols per second, and the number of samples per symbol is 10. Also, assume the filter span is 2, meaning the duration is up to 2 symbol times.

 

Bandwidth Calculation for a raised cosine filter:

The bandwidth of the raised cosine filter is calculated as:

Bandwidth = (Symbol Rate × (1 + Roll-off Factor)) / 2

Bandwidth = (100 × (1 + 0.25)) / 2 = 62.5 Hz

 

Time Duration for the Raise Cosine Filter if filer span = 2:

The time duration for the filter is:

Filter Duration = Filter Span × One Symbol Duration

Filter Duration = 2 × 0.01 = 0.02 seconds

Time-Bandwidth Product (TBP):

Now, the time-bandwidth product (TBP) is:

TBP = 0.02 × 62.5 = 1.25

 

Time Duration for the Raise Cosine Filter if filer span = 6:

If the filter span is 6, then the time-bandwidth product will be:

Now, TBP = 0.06 × 62.5 = 3.75

 

Conclusion: The raised cosine filter reduces the effect of intersymbol interference (ISI) during signal transmission. Increasing the bandwidth helps mitigate ISI to a greater extent, but it also increases the time-bandwidth product, making the system less bandwidth-efficient.

 

MATLAB Code for Time-Bandwidth product of a Raise Cosine Filter

%The code is devloped by SalimWireless.Com

clc;
clear;
close all;

% Parameters
beta = 0.25; % Roll-off factor (moderate, 0.25 for balance)
span = 2; % Filter span in symbols (moderate duration)
sps = 10; % Samples per symbol (higher ensures smooth waveform)
symbolRate = 1e2; % Symbol rate in Hz

% Generate the Raised Cosine Filter
rcFilter = rcosdesign(beta, span, sps, 'sqrt');

% Plot the Impulse Response
t = (-span/2 : 1/sps : span/2) * (1/symbolRate);
figure;
subplot(3,1,1);
plot(t, rcFilter, 'LineWidth', 1.5);
title('Raised Cosine Filter Impulse Response');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

% Analyze Frequency Response
[H, F] = freqz(rcFilter, 1, 1024, sps * symbolRate);
subplot(3,1,2);
plot(F, abs(H), 'LineWidth', 1.5);
title('Raised Cosine Filter Frequency Response');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
grid on;

% Time-Bandwidth Product Calculation
timeDuration = span * (1 / symbolRate); % Filter time duration
bandwidth = (1 + beta) * (symbolRate / 2); % Bandwidth in Hz
TBP = timeDuration * bandwidth; % Time-Bandwidth Product

% Display Results
disp(['Time Duration (s): ', num2str(timeDuration)]);
disp(['Bandwidth (Hz): ', num2str(bandwidth)]);
disp(['Time-Bandwidth Product: ', num2str(TBP)]);

% Simulate Filtered Signal
numSymbols = 100; % Number of symbols to transmit
data = randi([0 1], numSymbols, 1) * 2 - 1; % Random binary data (BPSK)
upsampledData = upsample(data, sps); % Upsample data
txSignal = conv(upsampledData, rcFilter, 'same'); % Filtered signal

% Plot Transmitted Signal
subplot(3,1,3);
plot(txSignal(1:200), 'LineWidth', 1.5); % Plot first few samples
title('Filtered Transmitted Signal');
xlabel('Sample Index');
ylabel('Amplitude');
grid on;


Output

 

 

 

 

 

Time Duration (s): 0.02
Bandwidth (Hz): 62.5
Time-Bandwidth Product: 1.25
 

Copy the MATLAB Code above from here

 

 

 MATLAB Code for the Time-Bandwidth Product of Gaussian Noise

%The code is devloped by SalimWireless.Com

clc;
clear;
close all;

% Step 1: Generate Gaussian pulse
t = 0:0.01:1; % Time vector
sigma = 1; % Standard deviation
gaussian_pulse = exp(-t.^2 / (2 * sigma^2));

% Step 2: Calculate RMS time duration
power_signal = gaussian_pulse.^2;
rms_time = sqrt(sum(t.^2 .* power_signal) / sum(power_signal));

% Step 3: Calculate Frequency Bandwidth
Fs = 100; % Sampling frequency
N = length(gaussian_pulse);
f = (-N/2:N/2-1) * (Fs / N); % Frequency vector
G_f = fftshift(fft(gaussian_pulse)); % Fourier transform

power_spectrum = abs(G_f).^2;
rms_freq = sqrt(sum(f.^2 .* power_spectrum) / sum(power_spectrum));

% Step 4: Compute TBP
TBP_rms = rms_time * rms_freq;

% Display results
disp(['RMS Time Duration (Delta t): ', num2str(rms_time)]);
disp(['RMS Frequency Bandwidth (Delta f): ', num2str(rms_freq)]);
disp(['Time-Bandwidth Product (TBP): ', num2str(TBP_rms)]);

Output

RMS Time Duration (Delta t): 0.50383
RMS Frequency Bandwidth (Delta f): 0.98786
Time-Bandwidth Product (TBP): 0.49772

 

Copy the MATLAB Code above from here

 

 

Further Reading 

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Simulation of ASK, FSK, and PSK using MATLAB Simulink

๐Ÿ“˜ Overview ๐Ÿงฎ How to use MATLAB Simulink ๐Ÿงฎ Simulation of ASK using MATLAB Simulink ๐Ÿงฎ Simulation of FSK using MATLAB Simulink ๐Ÿงฎ Simulation of PSK using MATLAB Simulink ๐Ÿงฎ Simulator for ASK, FSK, and PSK ๐Ÿงฎ Digital Signal Processing Simulator ๐Ÿ“š Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

Difference between AWGN and Rayleigh Fading

๐Ÿ“˜ Introduction, AWGN, and Rayleigh Fading ๐Ÿงฎ Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Constellation Diagrams of M-ary QAM | M-ary Modulation

๐Ÿ“˜ Overview of QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Online Simulator for M-ary QAM Constellations ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of QAM configurations ... ๐Ÿงฎ MATLAB Code for 4-QAM ๐Ÿงฎ MATLAB Code for 16-QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM ๐Ÿงฎ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diffe...

Calculation of SNR from FFT bins in MATLAB

๐Ÿ“˜ Overview ๐Ÿงฎ MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal ๐Ÿงฎ MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data ๐Ÿ“š Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (ฮฒ) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for calculating BER ๐Ÿงฎ MATLAB Codes for calculating theoretical BER ๐Ÿงฎ MATLAB Codes for calculating simulated BER ๐Ÿ“š Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

๐Ÿ“˜ Overview of QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of QAM configurations ... ๐Ÿงฎ MATLAB Code for 4-QAM ๐Ÿงฎ MATLAB Code for 16-QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM ๐Ÿงฎ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the vari...