Skip to main content

Why is Time-bandwidth Product Important?



Time-Bandwidth Product (TBP)

The time-bandwidth product (TBP) is defined as:

TBP = ฮ”f ฮ”t
  • ฮ”f (Bandwidth): The frequency bandwidth of the signal, representing the range of frequencies over which the signal is spread.
  • ฮ”t (Time duration): The duration for which the signal is significant, i.e., the time interval during which the signal is non-zero.

The TBP is a measure of the "spread" of the signal in both time and frequency domains. A higher TBP means the signal is both spread over a larger time period and occupies a wider frequency range.

 

 

To calculate the period of a signal with finite bandwidth, Heisenberg’s uncertainty principle plays a vital role where the time-bandwidth product indicates the processing gain of the signal.

We apply spread spectrum techniques in wireless communication for various reasons, such as interference resilience, security, robustness in multipath, etc. But in spread spectrum techniques, we compromise some bandwidth. 

The time-bandwidth product for Gaussian-shaped pulses is 0.44 (approx.).

If the time-bandwidth product of a signal is >> 1, then the signal bandwidth (B) is much greater than what is required for transmitting the data rate (Rb​). . So, in this case, we are unable to utilize the whole available bandwidth. For this case, spectrum efficiency will be less.

To your knowledge, the product of the variance of time and variance of bandwidth for a Gaussian signal is 0.25, and for a triangular-shaped signal, it is 0.3. 


Example

 Time-Bandwidth Product for a raise cosine filter

Let’s assume we have designed a raised cosine filter with a roll-off factor of 0.25. The symbol rate for transmission is 100 symbols per second, and the number of samples per symbol is 10. Also, assume the filter span is 2, meaning the duration is up to 2 symbol times.

 

Bandwidth Calculation for a raised cosine filter:

The bandwidth of the raised cosine filter is calculated as:

Bandwidth = (Symbol Rate × (1 + Roll-off Factor)) / 2

Bandwidth = (100 × (1 + 0.25)) / 2 = 62.5 Hz

 

Time Duration for the Raise Cosine Filter if filer span = 2:

The time duration for the filter is:

Filter Duration = Filter Span × One Symbol Duration

Filter Duration = 2 × 0.01 = 0.02 seconds

Time-Bandwidth Product (TBP):

Now, the time-bandwidth product (TBP) is:

TBP = 0.02 × 62.5 = 1.25

 

Time Duration for the Raise Cosine Filter if filer span = 6:

If the filter span is 6, then the time-bandwidth product will be:

Now, TBP = 0.06 × 62.5 = 3.75

 

Conclusion: The raised cosine filter reduces the effect of intersymbol interference (ISI) during signal transmission. Increasing the bandwidth helps mitigate ISI to a greater extent, but it also increases the time-bandwidth product, making the system less bandwidth-efficient.

 

MATLAB Code for Time-Bandwidth product of a Raise Cosine Filter

%The code is devloped by SalimWireless.Com

clc;
clear;
close all;

% Parameters
beta = 0.25; % Roll-off factor (moderate, 0.25 for balance)
span = 2; % Filter span in symbols (moderate duration)
sps = 10; % Samples per symbol (higher ensures smooth waveform)
symbolRate = 1e2; % Symbol rate in Hz

% Generate the Raised Cosine Filter
rcFilter = rcosdesign(beta, span, sps, 'sqrt');

% Plot the Impulse Response
t = (-span/2 : 1/sps : span/2) * (1/symbolRate);
figure;
subplot(3,1,1);
plot(t, rcFilter, 'LineWidth', 1.5);
title('Raised Cosine Filter Impulse Response');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

% Analyze Frequency Response
[H, F] = freqz(rcFilter, 1, 1024, sps * symbolRate);
subplot(3,1,2);
plot(F, abs(H), 'LineWidth', 1.5);
title('Raised Cosine Filter Frequency Response');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
grid on;

% Time-Bandwidth Product Calculation
timeDuration = span * (1 / symbolRate); % Filter time duration
bandwidth = (1 + beta) * (symbolRate / 2); % Bandwidth in Hz
TBP = timeDuration * bandwidth; % Time-Bandwidth Product

% Display Results
disp(['Time Duration (s): ', num2str(timeDuration)]);
disp(['Bandwidth (Hz): ', num2str(bandwidth)]);
disp(['Time-Bandwidth Product: ', num2str(TBP)]);

% Simulate Filtered Signal
numSymbols = 100; % Number of symbols to transmit
data = randi([0 1], numSymbols, 1) * 2 - 1; % Random binary data (BPSK)
upsampledData = upsample(data, sps); % Upsample data
txSignal = conv(upsampledData, rcFilter, 'same'); % Filtered signal

% Plot Transmitted Signal
subplot(3,1,3);
plot(txSignal(1:200), 'LineWidth', 1.5); % Plot first few samples
title('Filtered Transmitted Signal');
xlabel('Sample Index');
ylabel('Amplitude');
grid on;


Output

 

 

 

 

 

Time Duration (s): 0.02
Bandwidth (Hz): 62.5
Time-Bandwidth Product: 1.25
 

Copy the MATLAB Code above from here

 

 

 MATLAB Code for the Time-Bandwidth Product of Gaussian Noise

%The code is devloped by SalimWireless.Com

clc;
clear;
close all;

% Step 1: Generate Gaussian pulse
t = 0:0.01:1; % Time vector
sigma = 1; % Standard deviation
gaussian_pulse = exp(-t.^2 / (2 * sigma^2));

% Step 2: Calculate RMS time duration
power_signal = gaussian_pulse.^2;
rms_time = sqrt(sum(t.^2 .* power_signal) / sum(power_signal));

% Step 3: Calculate Frequency Bandwidth
Fs = 100; % Sampling frequency
N = length(gaussian_pulse);
f = (-N/2:N/2-1) * (Fs / N); % Frequency vector
G_f = fftshift(fft(gaussian_pulse)); % Fourier transform

power_spectrum = abs(G_f).^2;
rms_freq = sqrt(sum(f.^2 .* power_spectrum) / sum(power_spectrum));

% Step 4: Compute TBP
TBP_rms = rms_time * rms_freq;

% Display results
disp(['RMS Time Duration (Delta t): ', num2str(rms_time)]);
disp(['RMS Frequency Bandwidth (Delta f): ', num2str(rms_freq)]);
disp(['Time-Bandwidth Product (TBP): ', num2str(TBP_rms)]);

Output

RMS Time Duration (Delta t): 0.50383
RMS Frequency Bandwidth (Delta f): 0.98786
Time-Bandwidth Product (TBP): 0.49772

 

Copy the MATLAB Code above from here

 

 

Further Reading 

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿ“˜ Amplitude Shift Keying (ASK) ๐Ÿ“˜ Frequency Shift Keying (FSK) ๐Ÿ“˜ Phase Shift Keying (PSK) ๐Ÿ“˜ Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? ๐Ÿงฎ MATLAB Codes ๐Ÿ“˜ Simulator for binary ASK, FSK, and PSK Modulation ๐Ÿ“š Further Reading   ASK or OFF ON Keying Ask is a simple (less complex)  Digital Modulation Scheme  where we vary the  modulation  signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  t...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

๐Ÿ“˜ Overview ๐Ÿงฎ Multipath Components or MPCs ๐Ÿงฎ Excess Delay spread ๐Ÿงฎ Power delay Profile ๐Ÿงฎ RMS Delay Spread ๐Ÿงฎ Simulator for Calculating RMS Delay Spread ๐Ÿงฎ Why is there significant multipath in the case of very high frequencies? ๐Ÿงฎ Why RMS Delay Spread is essential for wireless communication? ๐Ÿงฎ Why the Power Delay Profile is essential? ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for calculating BER ๐Ÿงฎ MATLAB Codes for calculating theoretical BER ๐Ÿงฎ MATLAB Codes for calculating simulated BER ๐Ÿ“š Further Reading   BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is...