Skip to main content

Why is Time-bandwidth Product (TBP) Important?



Time-Bandwidth Product (TBP)

The time-bandwidth product (TBP) is defined as:

TBP = ฮ”f ฮ”t
  • ฮ”f (Bandwidth): The frequency bandwidth of the signal, representing the range of frequencies over which the signal is spread.
  • ฮ”t (Time duration): The duration for which the signal is significant, i.e., the time interval during which the signal is non-zero.

The TBP is a measure of the "spread" of the signal in both time and frequency domains. A higher TBP means the signal is both spread over a larger time period and occupies a wider frequency range.

 

 

To calculate the period of a signal with finite bandwidth, Heisenberg’s uncertainty principle plays a vital role where the time-bandwidth product indicates the processing gain of the signal.

We apply spread spectrum techniques in wireless communication for various reasons, such as interference resilience, security, robustness in multipath, etc. But in spread spectrum techniques, we compromise some bandwidth. 

The time-bandwidth product for Gaussian-shaped pulses is 0.44 (approx.).

If the time-bandwidth product of a signal is >> 1, then the signal bandwidth (B) is much greater than what is required for transmitting the data rate (Rb​). . So, in this case, we are unable to utilize the whole available bandwidth. For this case, spectrum efficiency will be less.

To your knowledge, the product of the variance of time and variance of bandwidth for a Gaussian signal is 0.25, and for a triangular-shaped signal, it is 0.3. 


Example

 Time-Bandwidth Product for a raise cosine filter

Let’s assume we have designed a raised cosine filter with a roll-off factor of 0.25. The symbol rate for transmission is 100 symbols per second, and the number of samples per symbol is 10. Also, assume the filter span is 2, meaning the duration is up to 2 symbol times.

 

Bandwidth Calculation for a raised cosine filter:

The bandwidth of the raised cosine filter is calculated as:

Bandwidth = (Symbol Rate × (1 + Roll-off Factor)) / 2

Bandwidth = (100 × (1 + 0.25)) / 2 = 62.5 Hz

 

Time Duration for the Raise Cosine Filter if filer span = 2:

The time duration for the filter is:

Filter Duration = Filter Span × One Symbol Duration

Filter Duration = 2 × 0.01 = 0.02 seconds

Time-Bandwidth Product (TBP):

Now, the time-bandwidth product (TBP) is:

TBP = 0.02 × 62.5 = 1.25

 

Time Duration for the Raise Cosine Filter if filer span = 6:

If the filter span is 6, then the time-bandwidth product will be:

Now, TBP = 0.06 × 62.5 = 3.75

 

Conclusion: The raised cosine filter reduces the effect of intersymbol interference (ISI) during signal transmission. Increasing the bandwidth helps mitigate ISI to a greater extent, but it also increases the time-bandwidth product, making the system less bandwidth-efficient.

 

MATLAB Code for Time-Bandwidth product of a Raise Cosine Filter

%The code is devloped by SalimWireless.Com

clc;
clear;
close all;

% Parameters
beta = 0.25; % Roll-off factor (moderate, 0.25 for balance)
span = 2; % Filter span in symbols (moderate duration)
sps = 10; % Samples per symbol (higher ensures smooth waveform)
symbolRate = 1e2; % Symbol rate in Hz

% Generate the Raised Cosine Filter
rcFilter = rcosdesign(beta, span, sps, 'sqrt');

% Plot the Impulse Response
t = (-span/2 : 1/sps : span/2) * (1/symbolRate);
figure;
subplot(3,1,1);
plot(t, rcFilter, 'LineWidth', 1.5);
title('Raised Cosine Filter Impulse Response');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

% Analyze Frequency Response
[H, F] = freqz(rcFilter, 1, 1024, sps * symbolRate);
subplot(3,1,2);
plot(F, abs(H), 'LineWidth', 1.5);
title('Raised Cosine Filter Frequency Response');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
grid on;

% Time-Bandwidth Product Calculation
timeDuration = span * (1 / symbolRate); % Filter time duration
bandwidth = (1 + beta) * (symbolRate / 2); % Bandwidth in Hz
TBP = timeDuration * bandwidth; % Time-Bandwidth Product

% Display Results
disp(['Time Duration (s): ', num2str(timeDuration)]);
disp(['Bandwidth (Hz): ', num2str(bandwidth)]);
disp(['Time-Bandwidth Product: ', num2str(TBP)]);

% Simulate Filtered Signal
numSymbols = 100; % Number of symbols to transmit
data = randi([0 1], numSymbols, 1) * 2 - 1; % Random binary data (BPSK)
upsampledData = upsample(data, sps); % Upsample data
txSignal = conv(upsampledData, rcFilter, 'same'); % Filtered signal

% Plot Transmitted Signal
subplot(3,1,3);
plot(txSignal(1:200), 'LineWidth', 1.5); % Plot first few samples
title('Filtered Transmitted Signal');
xlabel('Sample Index');
ylabel('Amplitude');
grid on;


Output

 

 

 

 

 

Time Duration (s): 0.02
Bandwidth (Hz): 62.5
Time-Bandwidth Product: 1.25
 

Copy the MATLAB Code above from here

 

 

 MATLAB Code for the Time-Bandwidth Product of Gaussian Noise

%The code is devloped by SalimWireless.Com

clc;
clear;
close all;

% Step 1: Generate Gaussian pulse
t = 0:0.01:1; % Time vector
sigma = 1; % Standard deviation
gaussian_pulse = exp(-t.^2 / (2 * sigma^2));

% Step 2: Calculate RMS time duration
power_signal = gaussian_pulse.^2;
rms_time = sqrt(sum(t.^2 .* power_signal) / sum(power_signal));

% Step 3: Calculate Frequency Bandwidth
Fs = 100; % Sampling frequency
N = length(gaussian_pulse);
f = (-N/2:N/2-1) * (Fs / N); % Frequency vector
G_f = fftshift(fft(gaussian_pulse)); % Fourier transform

power_spectrum = abs(G_f).^2;
rms_freq = sqrt(sum(f.^2 .* power_spectrum) / sum(power_spectrum));

% Step 4: Compute TBP
TBP_rms = rms_time * rms_freq;

% Display results
disp(['RMS Time Duration (Delta t): ', num2str(rms_time)]);
disp(['RMS Frequency Bandwidth (Delta f): ', num2str(rms_freq)]);
disp(['Time-Bandwidth Product (TBP): ', num2str(TBP_rms)]);

Output

RMS Time Duration (Delta t): 0.50383
RMS Frequency Bandwidth (Delta f): 0.98786
Time-Bandwidth Product (TBP): 0.49772

 

Copy the MATLAB Code above from here

 

 

Further Reading 

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Comparisons among ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for calculating Bandwidth of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on Comparisons among ASK, PSK, and FSK ... ๐Ÿงฎ Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB Code for ASK, FSK, and PSK

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code for ASK ๐Ÿงฎ MATLAB Code for FSK ๐Ÿงฎ MATLAB Code for PSK ๐Ÿงฎ Simulator for binary ASK, FSK, and PSK Modulations ๐Ÿ“š Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

๐Ÿ“˜ Overview ๐Ÿงฎ How to use MATLAB Simulink ๐Ÿงฎ Simulation of ASK using MATLAB Simulink ๐Ÿงฎ Simulation of FSK using MATLAB Simulink ๐Ÿงฎ Simulation of PSK using MATLAB Simulink ๐Ÿงฎ Simulator for ASK, FSK, and PSK ๐Ÿงฎ Digital Signal Processing Simulator ๐Ÿ“š Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB code for GMSK

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Codes for GMSK ๐Ÿงฎ Online Simulator for GMSK ๐Ÿงฎ Simulation Results for GMSK ๐Ÿ“š Further Reading   Copy the MATLAB code from here  % The code is developed by SalimWireless.com clc; clear; close all; % Parameters samples_per_bit = 36; bit_duration = 1; num_bits = 20; sample_interval = bit_duration / samples_per_bit; time_vector = 0:sample_interval:(num_bits * bit_duration); time_vector(end) = []; % Generate and modulate binary data binary_data = randi([0, 1], 1, num_bits); modulated_bits = 2 * binary_data - 1; upsampled_signal = kron(modulated_bits, ones(1, samples_per_bit)); figure; plot(time_vector, upsampled_signal); title('Message Signal'); % Apply Gaussian filter filtered_signal = conv(GMSK_gaussian_filter1(bit_duration, samples_per_bit), upsampled_signal); filtered_signal = [filtered_signal, filtered_signal(end)]; figure; plot(filtered_signal); title('Filtered Signal'); % Integration ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

๐Ÿงฎ MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together ๐Ÿงฎ MATLAB Code for M-ary QAM ๐Ÿงฎ MATLAB Code for M-ary PSK ๐Ÿ“š Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for ...