Skip to main content

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK



 

Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques:

Amplitude Shift Keying (ASK) [↗] :

In ASK, the amplitude of the baseband signal is varied to represent different symbols.
Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1).
ASK is simple but susceptible to noise.

ASK Baseband







ASK Passband 

 
 
Fig 1:  Amplitude Modulation and Demodulation (Get MATLAB Code)

In Figure 1 above, you can see binary information bits are simply represented by carrier signals in the case of binary information '1'. That's why it is called baseband signal.


Frequency Shift Keying (FSK) [↗] :

FSK modulates the frequency of the baseband signal to represent digital data.
In binary FSK (BFSK), two different frequencies represent binary values.
FSK is less susceptible to noise compared to ASK but requires more bandwidth.


FSK Baseband







FSK Passband

 

For baseband FSK modulation, we can map the binary bit '0' to 'j' and bit '1' to '1'. When transmitting the signals through a wireless medium, we can modulate bit '0' with a lower frequency carrier signal and bit '1' with a higher frequency carrier signal

 

 
Fig 2: Frequency Modulation and Demodulation (Get MATLAB Code from here)

In Figure 2 above, you can see binary information bits '1's and '0's are represented by higher frequency carrier signal and lower frequency carrier signal, respectively. So this is also an example of the baseband signal.

Phase Shift Keying (PSK) [↗] :

PSK varies the phase of the baseband signal to represent symbols. For example, we can map binary bit '0' to '-1' and bit '1' to '+1'.
Binary PSK (BPSK) uses two different phase shifts to represent binary values.
Quadrature PSK (QPSK) uses four phase shifts for higher data rates.
PSK is robust against noise and more bandwidth-efficient than ASK and FSK.

PSK Baseband







PSK Passband 






Baseband vs. Passband QAM

Quadrature Amplitude Modulation (QAM) [↗] :

QAM combines ASK and PSK by varying both amplitude and phase of the baseband signal.
In QAM, each symbol represents a combination of amplitude and phase, allowing for higher data rates.
Higher-order QAM (e.g., 16-QAM, 64-QAM) increases the number of symbols and data rates but requires more complex receiver designs.

Pulse Amplitude Modulation (PAM) [↗] :

PAM encodes information in the amplitude of pulses in the baseband signal.
PAM is often used in digital communication systems where digital data is encoded into pulse amplitudes.

Orthogonal Frequency Division Multiplexing (OFDM) [↗] :

OFDM divides the baseband signal into multiple narrowband subcarriers, each modulated using PSK or QAM.


OFDM is widely used in modern communication systems such as Wi-Fi, LTE, and digital television (DVB, ATSC) due to its robustness against frequency-selective fading and ability to mitigate intersymbol interference.

These modulation techniques play crucial roles in various communication systems, each with its advantages and limitations depending on the specific application requirements such as bandwidth efficiency, spectral efficiency, robustness against noise, and complexity of implementation. 

 

Further Reading

  1.  Comparing Baseband and Passband Implementations of m-ary QAM

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Comparisons among ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for calculating Bandwidth of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on Comparisons among ASK, PSK, and FSK ... ๐Ÿงฎ Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Understanding the Q...

MATLAB Code for ASK, FSK, and PSK

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code for ASK ๐Ÿงฎ MATLAB Code for FSK ๐Ÿงฎ MATLAB Code for PSK ๐Ÿงฎ Simulator for binary ASK, FSK, and PSK Modulations ๐Ÿ“š Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

๐Ÿงฎ MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together ๐Ÿงฎ MATLAB Code for M-ary QAM ๐Ÿงฎ MATLAB Code for M-ary PSK ๐Ÿ“š Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for ...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

๐Ÿ“˜ Overview ๐Ÿงฎ How to use MATLAB Simulink ๐Ÿงฎ Simulation of ASK using MATLAB Simulink ๐Ÿงฎ Simulation of FSK using MATLAB Simulink ๐Ÿงฎ Simulation of PSK using MATLAB Simulink ๐Ÿงฎ Simulator for ASK, FSK, and PSK ๐Ÿงฎ Digital Signal Processing Simulator ๐Ÿ“š Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...