Skip to main content

MATLAB Code for QAM (Quadrature Amplitude Modulation)


 

One of the best-performing modulation techniques is QAM [↗]. Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗]. In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency.


MATLAB Script (for 4-QAM)

% This code is written by SalimWirelss.Com
% This is an example of 4-QAM. Here constellation size is 4
% or total number of symbols/signals is 4
% We need 2 bits once to represent four constellation points
% QAM modulation is the combination of Amplitude modulation plus
% Phase Modulation. We map the decimal value of the input symbols, i.e.,
% 00, 01, 10, 11 to 1 + 1i, -1 + 1i, 1 - 1i, and -1 - 1i, respectively.


clc;clear all;close all;

M = 4; % Number of levels after quantization / size of signal constellation

k = log2(M); % Number of bits per symbol

rng(10) %assaining the value of seed integer

N =10000; % Number of bits to process

InputBits = randi([0 1],1,N); % Generating randon bits

InputSymbol_matrix = reshape(InputBits,length(InputBits)/k,k); % Reshape data into binary k-tuples, k = log2(M)

InputSymbols_decimal = bi2de(InputSymbol_matrix); % Convert binary to decimal

for n= 1:N/k

if InputSymbols_decimal(n)==0

QAM(n)= complex(1,1);

elseif InputSymbols_decimal(n)==1

QAM(n)= complex(-1,1);

elseif InputSymbols_decimal(n)==2

QAM(n)= complex(1,-1);

else

QAM(n)= complex(-1,-1);

end



end



%Transmission of 4QAM data over AWGN channel

snrdB = 10;

Y=awgn(QAM,snrdB); %received signal


%Threshold Detection

for n= 1:N/k

if (real(Y(n))>0 && imag(Y(n))>0)

Z(n)=complex(1,1);

elseif (real(Y(n))>0 && imag(Y(n))<0)

Z(n)=complex(1,-1);


elseif (real(Y(n))<0 && imag(Y(n))>0)

Z(n)=complex(-1,1);

else

Z(n)=complex(-1,-1);

end

end

figure(1)
scatter(real(QAM), imag(QAM))
xlim([-3, 3]);
ylim([-3, 3]);
legend('Transmitted Symbols')

figure(2)
scatter(real(Y), imag(Y))
xlim([-3, 3]);
ylim([-3, 3]);
legend('Received Symbols')
 

Output 

 
 
Fig 1: Constellation points of 4-QAM (Transmitted)


 
Fig 2: Constellation points of 4-QAM (Received)


Copy the MATLAB Code for 4-QAM


 

Another MATLAB Code (for 16-QAM)

%The code is developed by SalimWireless.Com

clc;
clear;
close all;

% Define parameters
M = 16; % Modulation order for 16-QAM
numSymbols = 10000; % Number of symbols to modulate

% Generate random data
data = randi([0 M-1], numSymbols, 1); % Ensure data is a column vector

% Modulate the data using 16-QAM
modData = qammod_custom(data, M);

snrdB = 15;
Y = awgn(modData,snrdB); %received signal

% Plot the constellation of the modulated signal
figure;
subplot(2,1,1);
scatter(real(modData), imag(modData), 'o');
grid on;
xlabel('In-phase');
ylabel('Quadrature');
title('Constellation Diagram of Modulated Signal (16-QAM)');
axis([-1.5 1.5 -1.5 1.5]); % Set axis limits for better visualization

subplot(2,1,2);
scatter(real(Y), imag(Y), 'o');
grid on;
xlabel('In-phase');
ylabel('Quadrature');
title('Constellation Diagram of Noisy Received Signal before demodulation');
axis([-1.5 1.5 -1.5 1.5]); % Set axis limits for better visualization

% Demodulate the received signal
receivedData = qamdemod_custom(modData, M);

% Ensure receivedData is a column vector for comparison
receivedData = receivedData(:);


% Custom 16-QAM Modulation Function
function modData = qammod_custom(data, M)
% QAMMOD_CUSTOM Modulate data using 16-QAM
% data - Column vector of integers (each element is between 0 and M-1)
% M - Modulation order (should be 16 for 16-QAM)

% Check if M is 16
if M ~= 16
error('This function is designed for 16-QAM modulation.');
end

% Define the 16-QAM constellation
constellation = [-3-3i, -3-1i, -1-3i, -1-1i, ...
-3+3i, -3+1i, -1+3i, -1+1i, ...
+3-3i, +3-1i, +1-3i, +1-1i, ...
+3+3i, +3+1i, +1+3i, +1+1i];

% Normalize constellation
constellation = constellation / sqrt(mean(abs(constellation).^2)); % Scale to unit average power

% Map data to constellation points
modData = constellation(data + 1);
end

% Custom 16-QAM Demodulation Function
function demodData = qamdemod_custom(modData, M)
% QAMDEMOD_CUSTOM Demodulate data using 16-QAM
% modData - Column vector of complex numbers (modulated symbols)
% M - Modulation order (should be 16 for 16-QAM)

% Check if M is 16
if M ~= 16
error('This function is designed for 16-QAM demodulation.');
end

% Define the 16-QAM constellation
constellation = [-3-3i, -3-1i, -1-3i, -1-1i, ...
-3+3i, -3+1i, -1+3i, -1+1i, ...
+3-3i, +3-1i, +1-3i, +1-1i, ...
+3+3i, +3+1i, +1+3i, +1+1i];

% Normalize constellation
constellation = constellation / sqrt(mean(abs(constellation).^2)); % Scale to unit average power

% Ensure modData is a column vector
modData = modData(:);

% Compute the distances from each modData point to all constellation points
numSymbols = length(modData);
numConstellations = length(constellation);
distances = zeros(numSymbols, numConstellations);
for k = 1:numConstellations
distances(:, k) = abs(modData - constellation(k)).^2;
end

% Find the closest constellation point for each modData point
[~, demodData] = min(distances, [], 2);

% Convert to zero-based index
demodData = demodData - 1;
end

Output  


 
 
 
 

Copy the MATLAB Code above from here (for 16-QAM)

 

MATLAB code for M-ary QAM (e.g., 4, 8, 16, 32, 64, 128, 256)

%The code is developed by SalimWireless.com
% M-ary QAM Modulation and Demodulation
clc;
clear;
close all;


% Parameters
M = 32; % Order of QAM (M-QAM)
N = 1000; % Number of symbols
SNR = 10; % Signal-to-Noise Ratio in dB


% Generate random data symbols
dataSymbols = randi([0 M-1], N, 1);


% Modulate using M-QAM
txSignal = qammod(dataSymbols, M);


% Add AWGN noise
rxSignal = awgn(txSignal, SNR, 'measured');


% Demodulate
demodulatedSymbols = qamdemod(rxSignal, M);


% Calculate symbol error rate
symbolErrors = sum(dataSymbols ~= demodulatedSymbols);
SER = symbolErrors / N;


% Display results
disp(['Symbol Error Rate (SER): ', num2str(SER)]);


% Plot constellation diagrams
figure;
subplot(2, 1, 1);
plot(real(txSignal), imag(txSignal), 'o');
grid on;
title('Transmitted Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');


subplot(2, 1, 2);
plot(real(rxSignal), imag(rxSignal), 'o');
grid on;
title('Received Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');

Output








Copy the MATLAB Code above from here (e.g., for QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM.)


MATLAB Code for BER vs SNR for 4-QAM, 16-QAM, 32-QAM, and so on

 
 


Also read about

Next>>

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿ“˜ Amplitude Shift Keying (ASK) ๐Ÿ“˜ Frequency Shift Keying (FSK) ๐Ÿ“˜ Phase Shift Keying (PSK) ๐Ÿ“˜ Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? ๐Ÿงฎ MATLAB Codes ๐Ÿ“˜ Simulator for binary ASK, FSK, and PSK Modulation ๐Ÿ“š Further Reading   ASK or OFF ON Keying Ask is a simple (less complex)  Digital Modulation Scheme  where we vary the  modulation  signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  t...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

๐Ÿ“˜ Overview ๐Ÿงฎ Multipath Components or MPCs ๐Ÿงฎ Excess Delay spread ๐Ÿงฎ Power delay Profile ๐Ÿงฎ RMS Delay Spread ๐Ÿงฎ Simulator for Calculating RMS Delay Spread ๐Ÿงฎ Why is there significant multipath in the case of very high frequencies? ๐Ÿงฎ Why RMS Delay Spread is essential for wireless communication? ๐Ÿงฎ Why the Power Delay Profile is essential? ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for calculating BER ๐Ÿงฎ MATLAB Codes for calculating theoretical BER ๐Ÿงฎ MATLAB Codes for calculating simulated BER ๐Ÿ“š Further Reading   BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is...