Skip to main content

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...


 

MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK


Output





If M>8, the distance between constellation points is short, and a higher Eb/No (SNR per Bit) ratio is required to reach the desired BER. Although the mapping from the data bits is arbitrary, some data bits are typically used. Every constellation point in the M-PSK constellation has two neighbors, each with an equal chance of making an error. As there are four bits per symbol, BER assumes a one-bit error for every mistake in a character. The demodulator in PSK must be able to calculate the received sinusoid's phase about some reference phase. While using the same bandwidths as ASK, PSK is less prone to errors than ASK. Also, using bandwidth with a significant data rate is more effective.

In the above figure, it is clear that PSK is more robust than QAM in the context of noise resilience. QAM modulations, including 16-QAM, are sensitive to both amplitude and phase errors. As you increase the number of constellation points (e.g., from 16-QAM to 8-PSK), the signal becomes more susceptible to amplitude and phase noise. In contrast, PSK modulations primarily rely on phase information and may be less sensitive to amplitude variations. This can make 8-PSK more robust in this scenario. 

QAM schemes require a higher SNR to achieve the same error rates as PSK schemes with the same number of constellation points. This means that 16-QAM may require a higher SNR than 8-PSK to achieve a satisfactory bit error rate (BER) or symbol error rate (SER). In practical communication systems, achieving the necessary SNR can be challenging, especially in noisy or fading channels.

MATLAB Code for BER vs SNR for m-ary QAM

clc;
clear all;
close all;


% Set parameters
snr_dB = -20:2:20; % SNR values in dB
qam_orders = [4, 16, 64, 256]; % QAM modulation orders

% Loop through each QAM order
for qam_order = qam_orders
% Calculate theoretical BER using berawgn
ber = berawgn(snr_dB, 'qam', qam_order);

% Plot the results
semilogy(snr_dB, ber, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));
hold on;
end

% Add labels and legend
title('BER vs SNR for Variable QAM');
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
grid on;
legend('Location', 'best');
web('https://www.salimwireless.com/search?q=m%20ary%20qam', '-browser');

Output

 

Fig: BER vs SNR graph for Various QAM
 

Copy the aforementioned MATLAB Code for BER vs SNR for   m-ary QAM from Here

 

 

MATLAB Code for BER vs SNR for m-ary PSK

clc;
clear all;
close all;

% Parameters
num_symbols = 1e5; % Number of symbols
snr_db = 0:2:20; % Range of SNR values in dB

% PSK orders to be tested
psk_orders = [2, 4, 8, 16, 32];

% Initialize BER arrays
ber_results = zeros(length(psk_orders), length(snr_db));

% BER calculation for each PSK order and SNR value
for i = 1:length(psk_orders)
psk_order = psk_orders(i);

for j = 1:length(snr_db)
% Generate random symbols
data_symbols = randi([0, psk_order-1], 1, num_symbols);

% Modulate symbols to generate signal
modulated_signal = pskmod(data_symbols, psk_order);

% Add AWGN to the signal
snr_linear = 10^(snr_db(j)/10);
received_signal = awgn(modulated_signal, snr_db(j), 'measured');

% Demodulate received signal
demodulated_symbols = pskdemod(received_signal, psk_order);

% Calculate BER
ber_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols;
end
end

% Plot BER vs. SNR
figure;
semilogy(snr_db, ber_results(1, :), 'o-', 'DisplayName', 'BPSK');
hold on;

for i = 2:length(psk_orders)
semilogy(snr_db, ber_results(i, :), 'o-', 'DisplayName', sprintf('%d-PSK', psk_orders(i)));
end

title('BER vs. SNR for Various PSK Schemes');
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
legend('Location', 'best');
grid on;
hold off;
web('https://www.salimwireless.com/search?q=m%20ary%20psk', '-browser');

Output

 
Fig: BER vs SNR graph for various PSK
 

Copy the above code for BER vs SNR for m-ary PSK from here



Read more about

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

https://www.salimwireless.com/2024/11/constellation-diagram-in-matlab.html 📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Simulator for ASK, FSK, and PSK Generation 🧮 Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rat...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory 🧮 MATLAB Codes 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 📚 Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams ...

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) 📘 Overview & Theory 📘 How does the channel impulse response affect the signal? 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ(...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need...

Online Simulator for Constellation Diagram of M-ary PSK

Constellation Diagram of M-ary PSK Bitstream (e.g. 1,0,1,1): Generate Message Modulation Order (M): M must be a power of 2 (e.g., 2, 4, 8, 16) Plot Constellation Diagram Explore Signal Processing Simulations Further Reading   Online Simulator for M-ary PSK Online Simulator for ASK, FSK, and PSK   Explore DSP Simulations