Skip to main content

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...


 

MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK


Output





If M>8, the distance between constellation points is short, and a higher Eb/No (SNR per Bit) ratio is required to reach the desired BER. Although the mapping from the data bits is arbitrary, some data bits are typically used. Every constellation point in the M-PSK constellation has two neighbors, each with an equal chance of making an error. As there are four bits per symbol, BER assumes a one-bit error for every mistake in a character. The demodulator in PSK must be able to calculate the received sinusoid's phase about some reference phase. While using the same bandwidths as ASK, PSK is less prone to errors than ASK. Also, using bandwidth with a significant data rate is more effective.

In the above figure, it is clear that PSK is more robust than QAM in the context of noise resilience. QAM modulations, including 16-QAM, are sensitive to both amplitude and phase errors. As you increase the number of constellation points (e.g., from 16-QAM to 8-PSK), the signal becomes more susceptible to amplitude and phase noise. In contrast, PSK modulations primarily rely on phase information and may be less sensitive to amplitude variations. This can make 8-PSK more robust in this scenario. 

QAM schemes require a higher SNR to achieve the same error rates as PSK schemes with the same number of constellation points. This means that 16-QAM may require a higher SNR than 8-PSK to achieve a satisfactory bit error rate (BER) or symbol error rate (SER). In practical communication systems, achieving the necessary SNR can be challenging, especially in noisy or fading channels.

MATLAB Code for BER vs SNR for m-ary QAM

clc;
clear all;
close all;


% Set parameters
snr_dB = -20:2:20; % SNR values in dB
qam_orders = [4, 16, 64, 256]; % QAM modulation orders

% Loop through each QAM order
for qam_order = qam_orders
% Calculate theoretical BER using berawgn
ber = berawgn(snr_dB, 'qam', qam_order);

% Plot the results
semilogy(snr_dB, ber, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));
hold on;
end

% Add labels and legend
title('BER vs SNR for Variable QAM');
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
grid on;
legend('Location', 'best');
web('https://www.salimwireless.com/search?q=m%20ary%20qam', '-browser');

Output

 

Fig: BER vs SNR graph for Various QAM
 

Copy the aforementioned MATLAB Code for BER vs SNR for   m-ary QAM from Here

 

 

MATLAB Code for BER vs SNR for m-ary PSK

clc;
clear all;
close all;

% Parameters
num_symbols = 1e5; % Number of symbols
snr_db = 0:2:20; % Range of SNR values in dB

% PSK orders to be tested
psk_orders = [2, 4, 8, 16, 32];

% Initialize BER arrays
ber_results = zeros(length(psk_orders), length(snr_db));

% BER calculation for each PSK order and SNR value
for i = 1:length(psk_orders)
psk_order = psk_orders(i);

for j = 1:length(snr_db)
% Generate random symbols
data_symbols = randi([0, psk_order-1], 1, num_symbols);

% Modulate symbols to generate signal
modulated_signal = pskmod(data_symbols, psk_order);

% Add AWGN to the signal
snr_linear = 10^(snr_db(j)/10);
received_signal = awgn(modulated_signal, snr_db(j), 'measured');

% Demodulate received signal
demodulated_symbols = pskdemod(received_signal, psk_order);

% Calculate BER
ber_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols;
end
end

% Plot BER vs. SNR
figure;
semilogy(snr_db, ber_results(1, :), 'o-', 'DisplayName', 'BPSK');
hold on;

for i = 2:length(psk_orders)
semilogy(snr_db, ber_results(i, :), 'o-', 'DisplayName', sprintf('%d-PSK', psk_orders(i)));
end

title('BER vs. SNR for Various PSK Schemes');
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
legend('Location', 'best');
grid on;
hold off;
web('https://www.salimwireless.com/search?q=m%20ary%20psk', '-browser');

Output

 
Fig: BER vs SNR graph for various PSK
 

Copy the above code for BER vs SNR for m-ary PSK from here



Read more about

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿ“˜ Amplitude Shift Keying (ASK) ๐Ÿ“˜ Frequency Shift Keying (FSK) ๐Ÿ“˜ Phase Shift Keying (PSK) ๐Ÿ“˜ Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? ๐Ÿงฎ MATLAB Codes ๐Ÿ“˜ Simulator for binary ASK, FSK, and PSK Modulation ๐Ÿ“š Further Reading   ASK or OFF ON Keying Ask is a simple (less complex)  Digital Modulation Scheme  where we vary the  modulation  signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  t...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

๐Ÿ“˜ Overview ๐Ÿงฎ Multipath Components or MPCs ๐Ÿงฎ Excess Delay spread ๐Ÿงฎ Power delay Profile ๐Ÿงฎ RMS Delay Spread ๐Ÿงฎ Simulator for Calculating RMS Delay Spread ๐Ÿงฎ Why is there significant multipath in the case of very high frequencies? ๐Ÿงฎ Why RMS Delay Spread is essential for wireless communication? ๐Ÿงฎ Why the Power Delay Profile is essential? ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for calculating BER ๐Ÿงฎ MATLAB Codes for calculating theoretical BER ๐Ÿงฎ MATLAB Codes for calculating simulated BER ๐Ÿ“š Further Reading   BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is...