Skip to main content

How Windowing Affects Your Periodogram


The windowed periodogram is a widely used technique for estimating the Power Spectral Density (PSD) of a signal. It enhances the classical periodogram by mitigating spectral leakage through the application of a windowing function. This technique is essential in signal processing for accurate frequency-domain analysis.

 

Power Spectral Density (PSD)

The PSD characterizes how the power of a signal is distributed across different frequency components. For a discrete-time signal, the PSD is defined as the Fourier Transform of the signal’s autocorrelation function:

Sx(f) = FT{Rx(Ï„)}

Here, Rx(Ï„)}is the autocorrelation function.

FT : Fourier Transform

 

Classical Periodogram

The periodogram is a non-parametric PSD estimation method based on the Discrete Fourier Transform (DFT):

Px(f) = \(\frac{1}{N}\) X(f)2

Here:

  • X(f): DFT of the signal x(n)

  • N: Signal length

However, the classical periodogram suffers from spectral leakage due to abrupt truncation of the signal.

 

Windowing to Mitigate Spectral Leakage

Spectral leakage can be minimized by applying a window function to the signal before computing the DFT. The resulting PSD estimate is called the windowed periodogram:

Pw(f) = \(\frac{1}{NW}\) Xw(f)2

Here:

  • w(n): Window function

  • W: Window normalization factor

Common Window Functions

  • Rectangular Window: Equivalent to the classical periodogram.

w[n]=1, 0≤n≤N−1

w[n]=0, otherwise

Where, N is the window length

  • Hamming Window: Reduces sidelobe amplitudes, improving frequency resolution.

w[n]=0.5(1−cos(\(\frac{\ 2\pi n}{N - 1}\ \))), 0≤n≤N−1

Where, N is the window length

  • Hanning Window: Similar to Hamming but with less sidelobe attenuation.

w[n]=0.54 – 0.46cos(\(\frac{\ 2\pi n}{N - 1}\ \)), 0≤n≤N−1

Where, N is the window length

  • Blackman Window: Offers even greater sidelobe suppression but at the cost of wider main lobes.

w[n]=0.42 – 0.5(cos(\(\frac{\ 2\pi n}{N - 1}\ \)) + 0.08(cos(\(\frac{\ 4\pi n}{N - 1}\ \)), 0≤n≤N−1

Where, N is the window length

 

Implementation Steps

  1. Segment the Signal: Divide the signal into overlapping or non-overlapping segments of length N.

  2. Apply a Window Function: Multiply each segment by a window function w(n).

  3. Compute the DFT: Calculate the DFT of the windowed segments.

  4. Average the Periodograms: For overlapping segments, average the periodograms to reduce variance.

     

Properties of the Windowed Periodogram

  • Bias: Windowing introduces bias in the PSD estimate as the window modifies the signal spectrum.

  • Variance: Averaging periodograms (Welch method) reduces variance but decreases frequency resolution.

  • Trade-Off: The choice of window affects the trade-off between spectral resolution and leakage suppression.

     

    MATLAB Code

    clc;
    clear;
    close all;

    fs = 48000;
    t = 0:1/fs:0.02;
    f_ping = 12000;

    % Base sine wave
    sine_wave = sin(2*pi*f_ping*t)';

    % Apply windows
    w_rect = ones(size(sine_wave));
    w_hann = hann(length(sine_wave));
    w_hamming = hamming(length(sine_wave));
    w_blackman = blackman(length(sine_wave));

    % Windowed signals
    s_rect = sine_wave .* w_rect;
    s_hann = sine_wave .* w_hann;
    s_hamming = sine_wave .* w_hamming;
    s_blackman = sine_wave .* w_blackman;

    % FFT
    Nfft = 4096;
    f = fs*(0:Nfft/2-1)/Nfft;

    % Function to compute and normalize spectrum
    get_norm_fft = @(sig) abs(fft(sig, Nfft))/max(abs(fft(sig, Nfft)));

    S_rect = get_norm_fft(s_rect);
    S_hann = get_norm_fft(s_hann);
    S_hamming = get_norm_fft(s_hamming);
    S_blackman = get_norm_fft(s_blackman);

    % Mainlobe power (±2 bins around peak)
    mainlobe_bins = 2;

    % Function to compute power ratio
    compute_power_ratio = @(S) ...
    deal( ...
    sum(S.^2), ... % Total power
    max(1, find(S == max(S), 1)), ... % Peak bin
    @(peak_bin) sum(S(max(1,peak_bin-mainlobe_bins):min(Nfft,peak_bin+mainlobe_bins)).^2), ...
    @(total, main) 10*log10((total-main)/main) ... % dB sidelobe/mainlobe ratio
    );

    % Calculate ratios
    [total_r, peak_r, get_main_r, get_slr_r] = compute_power_ratio(S_rect);
    main_r = get_main_r(peak_r); slr_r = get_slr_r(total_r, main_r);

    [total_h, peak_h, get_main_h, get_slr_h] = compute_power_ratio(S_hann);
    main_h = get_main_h(peak_h); slr_h = get_slr_h(total_h, main_h);

    [total_ham, peak_ham, get_main_ham, get_slr_ham] = compute_power_ratio(S_hamming);
    main_ham = get_main_ham(peak_ham); slr_ham = get_slr_ham(total_ham, main_ham);

    [total_b, peak_b, get_main_b, get_slr_b] = compute_power_ratio(S_blackman);
    main_b = get_main_b(peak_b); slr_b = get_slr_b(total_b, main_b);

    % Display Results
    fprintf('Window | Mainlobe Power | Sidelobe Power | Sidelobe/Main (dB)\n');
    fprintf('------------|----------------|----------------|--------------------\n');
    fprintf('Rectangular | %14.4f | %14.4f | %18.2f\n', main_r, total_r - main_r, slr_r);
    fprintf('Hann | %14.4f | %14.4f | %18.2f\n', main_h, total_h - main_h, slr_h);
    fprintf('Hamming | %14.4f | %14.4f | %18.2f\n', main_ham, total_ham - main_ham, slr_ham);
    fprintf('Blackman | %14.4f | %14.4f | %18.2f\n', main_b, total_b - main_b, slr_b);

    % Plot
    figure;
    plot(f, 20*log10(S_rect(1:Nfft/2)), 'k'); hold on;
    plot(f, 20*log10(S_hann(1:Nfft/2)), 'r');
    plot(f, 20*log10(S_hamming(1:Nfft/2)), 'g');
    plot(f, 20*log10(S_blackman(1:Nfft/2)), 'b');
    legend('Rectangular','Hann','Hamming','Blackman');
    xlim([f_ping-3000 f_ping+3000]); ylim([-100 5]);
    xlabel('Frequency (Hz)'); ylabel('Magnitude (dB)');
    title('Windowing Effects on Spectrum');
    grid on;

    Output 

    Window      | Mainlobe Power | Sidelobe Power | Sidelobe/Main (dB)
    ------------|----------------|----------------|--------------------
    Rectangular |         3.5771 |         4.9562 |               1.42
    Hann        |         4.3630 |         8.4370 |               2.86
    Hamming     |         4.2367 |         7.3928 |               2.42
    Blackman    |         4.4940 |        10.2410 |               3.58

     

     








Applications

  • Signal Processing: Analyzing frequency content of time-varying signals.

  • Communications: Evaluating spectrum occupancy in wireless systems.

  • Bioinformatics: Investigating periodicities in biological signals (e.g., EEG, ECG).

  • Seismology: Characterizing seismic wave frequencies.

     

    Further Reading

    1. Periodogram in MATLAB

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Periodogram in MATLAB

Power Spectral Density Estimation Using the Periodogram Step 1: Signal Representation Let the signal be x[n] , where: n = 0, 1, ..., N-1 (discrete-time indices), N is the total number of samples. Step 2: Compute the Discrete-Time Fourier Transform (DTFT) The DTFT of x[n] is: X(f) = ∑ x[n] e -j2Ï€fn For practical computation, the Discrete Fourier Transform (DFT) is used: X[k] = ∑ x[n] e -j(2Ï€/N)kn , k = 0, 1, ..., N-1 k represents discrete frequency bins, f_k = k/N * f_s , where f_s is the sampling frequency. Step 3: Compute Power Spectral Density (PSD) The periodogram estimates the PSD as: S_x(f_k) = (1/N) |X[k]|² S_x(f_k) ...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Constellation Diagram of ASK in Detail

A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024]  UGC Net Paper 1 With Answer Key Download Pdf [Sep 2024] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [Sep 2024]  UGC Net Paper 1 With Answer Key Download Pdf [June 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...