Skip to main content

How Windowing Affects Your Periodogram


The windowed periodogram is a widely used technique for estimating the Power Spectral Density (PSD) of a signal. It enhances the classical periodogram by mitigating spectral leakage through the application of a windowing function. This technique is essential in signal processing for accurate frequency-domain analysis.

 

Power Spectral Density (PSD)

The PSD characterizes how the power of a signal is distributed across different frequency components. For a discrete-time signal, the PSD is defined as the Fourier Transform of the signal’s autocorrelation function:

Sx(f) = FT{Rx(ฯ„)}

Here, Rx(ฯ„)}is the autocorrelation function.

FT : Fourier Transform

 

Classical Periodogram

The periodogram is a non-parametric PSD estimation method based on the Discrete Fourier Transform (DFT):

Px(f) = \(\frac{1}{N}\) X(f)2

Here:

  • X(f): DFT of the signal x(n)

  • N: Signal length

However, the classical periodogram suffers from spectral leakage due to abrupt truncation of the signal.

 

Windowing to Mitigate Spectral Leakage

Spectral leakage can be minimized by applying a window function to the signal before computing the DFT. The resulting PSD estimate is called the windowed periodogram:

Pw(f) = \(\frac{1}{NW}\) Xw(f)2

Here:

  • w(n): Window function

  • W: Window normalization factor

Common Window Functions

  • Rectangular Window: Equivalent to the classical periodogram.

w[n]=1, 0≤n≤N−1

w[n]=0, otherwise

Where, N is the window length

  • Hamming Window: Reduces sidelobe amplitudes, improving frequency resolution.

w[n]=0.5(1−cos(\(\frac{\ 2\pi n}{N - 1}\ \))), 0≤n≤N−1

Where, N is the window length

  • Hanning Window: Similar to Hamming but with less sidelobe attenuation.

w[n]=0.54 – 0.46cos(\(\frac{\ 2\pi n}{N - 1}\ \)), 0≤n≤N−1

Where, N is the window length

  • Blackman Window: Offers even greater sidelobe suppression but at the cost of wider main lobes.

w[n]=0.42 – 0.5(cos(\(\frac{\ 2\pi n}{N - 1}\ \)) + 0.08(cos(\(\frac{\ 4\pi n}{N - 1}\ \)), 0≤n≤N−1

Where, N is the window length

 

Implementation Steps

  1. Segment the Signal: Divide the signal into overlapping or non-overlapping segments of length N.

  2. Apply a Window Function: Multiply each segment by a window function w(n).

  3. Compute the DFT: Calculate the DFT of the windowed segments.

  4. Average the Periodograms: For overlapping segments, average the periodograms to reduce variance.

     

Properties of the Windowed Periodogram

  • Bias: Windowing introduces bias in the PSD estimate as the window modifies the signal spectrum.

  • Variance: Averaging periodograms (Welch method) reduces variance but decreases frequency resolution.

  • Trade-Off: The choice of window affects the trade-off between spectral resolution and leakage suppression.

     

    MATLAB Code

    clc;
    clear;
    close all;

    fs = 48000;
    t = 0:1/fs:0.02;
    f_ping = 12000;

    % Base sine wave
    sine_wave = sin(2*pi*f_ping*t)';

    % Apply windows
    w_rect = ones(size(sine_wave));
    w_hann = hann(length(sine_wave));
    w_hamming = hamming(length(sine_wave));
    w_blackman = blackman(length(sine_wave));

    % Windowed signals
    s_rect = sine_wave .* w_rect;
    s_hann = sine_wave .* w_hann;
    s_hamming = sine_wave .* w_hamming;
    s_blackman = sine_wave .* w_blackman;

    % FFT
    Nfft = 4096;
    f = fs*(0:Nfft/2-1)/Nfft;

    % Function to compute and normalize spectrum
    get_norm_fft = @(sig) abs(fft(sig, Nfft))/max(abs(fft(sig, Nfft)));

    S_rect = get_norm_fft(s_rect);
    S_hann = get_norm_fft(s_hann);
    S_hamming = get_norm_fft(s_hamming);
    S_blackman = get_norm_fft(s_blackman);

    % Mainlobe power (±2 bins around peak)
    mainlobe_bins = 2;

    % Function to compute power ratio
    compute_power_ratio = @(S) ...
    deal( ...
    sum(S.^2), ... % Total power
    max(1, find(S == max(S), 1)), ... % Peak bin
    @(peak_bin) sum(S(max(1,peak_bin-mainlobe_bins):min(Nfft,peak_bin+mainlobe_bins)).^2), ...
    @(total, main) 10*log10((total-main)/main) ... % dB sidelobe/mainlobe ratio
    );

    % Calculate ratios
    [total_r, peak_r, get_main_r, get_slr_r] = compute_power_ratio(S_rect);
    main_r = get_main_r(peak_r); slr_r = get_slr_r(total_r, main_r);

    [total_h, peak_h, get_main_h, get_slr_h] = compute_power_ratio(S_hann);
    main_h = get_main_h(peak_h); slr_h = get_slr_h(total_h, main_h);

    [total_ham, peak_ham, get_main_ham, get_slr_ham] = compute_power_ratio(S_hamming);
    main_ham = get_main_ham(peak_ham); slr_ham = get_slr_ham(total_ham, main_ham);

    [total_b, peak_b, get_main_b, get_slr_b] = compute_power_ratio(S_blackman);
    main_b = get_main_b(peak_b); slr_b = get_slr_b(total_b, main_b);

    % Display Results
    fprintf('Window | Mainlobe Power | Sidelobe Power | Sidelobe/Main (dB)\n');
    fprintf('------------|----------------|----------------|--------------------\n');
    fprintf('Rectangular | %14.4f | %14.4f | %18.2f\n', main_r, total_r - main_r, slr_r);
    fprintf('Hann | %14.4f | %14.4f | %18.2f\n', main_h, total_h - main_h, slr_h);
    fprintf('Hamming | %14.4f | %14.4f | %18.2f\n', main_ham, total_ham - main_ham, slr_ham);
    fprintf('Blackman | %14.4f | %14.4f | %18.2f\n', main_b, total_b - main_b, slr_b);

    % Plot
    figure;
    plot(f, 20*log10(S_rect(1:Nfft/2)), 'k'); hold on;
    plot(f, 20*log10(S_hann(1:Nfft/2)), 'r');
    plot(f, 20*log10(S_hamming(1:Nfft/2)), 'g');
    plot(f, 20*log10(S_blackman(1:Nfft/2)), 'b');
    legend('Rectangular','Hann','Hamming','Blackman');
    xlim([f_ping-3000 f_ping+3000]); ylim([-100 5]);
    xlabel('Frequency (Hz)'); ylabel('Magnitude (dB)');
    title('Windowing Effects on Spectrum');
    grid on;

    Output 

    Window      | Mainlobe Power | Sidelobe Power | Sidelobe/Main (dB)
    ------------|----------------|----------------|--------------------
    Rectangular |         3.5771 |         4.9562 |               1.42
    Hann        |         4.3630 |         8.4370 |               2.86
    Hamming     |         4.2367 |         7.3928 |               2.42
    Blackman    |         4.4940 |        10.2410 |               3.58

     

     








Applications

  • Signal Processing: Analyzing frequency content of time-varying signals.

  • Communications: Evaluating spectrum occupancy in wireless systems.

  • Bioinformatics: Investigating periodicities in biological signals (e.g., EEG, ECG).

  • Seismology: Characterizing seismic wave frequencies.

     

    Further Reading

    1. Periodogram in MATLAB

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿ“˜ Amplitude Shift Keying (ASK) ๐Ÿ“˜ Frequency Shift Keying (FSK) ๐Ÿ“˜ Phase Shift Keying (PSK) ๐Ÿ“˜ Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? ๐Ÿงฎ MATLAB Codes ๐Ÿ“˜ Simulator for binary ASK, FSK, and PSK Modulation ๐Ÿ“š Further Reading   ASK or OFF ON Keying Ask is a simple (less complex)  Digital Modulation Scheme  where we vary the  modulation  signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  t...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

Coherence Bandwidth and Coherence Time

๐Ÿงฎ Coherence Bandwidth ๐Ÿงฎ Coherence Time ๐Ÿงฎ Coherence Time Calculator ๐Ÿงฎ Relationship between Coherence Time and Delay Spread ๐Ÿงฎ MATLAB Code to find Relationship between Coherence Time and delay Spread ๐Ÿ“š Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for calculating BER ๐Ÿงฎ MATLAB Codes for calculating theoretical BER ๐Ÿงฎ MATLAB Codes for calculating simulated BER ๐Ÿ“š Further Reading   BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is...