Skip to main content

Gaussian minimum shift keying (GMSK)



Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems!

Core Process of GMSK Modulation

  1. Phase Accumulation (Integration of Filtered Signal)

    After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal:

    θ(t) = ∫0t mfiltered(Ï„) dÏ„

    This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes.

  2. Phase Modulation

    The next step involves using the phase signal to modulate a high-frequency carrier wave:

    s(t) = cos(2πfct + θ(t))

    Here, fc is the carrier frequency, and s(t) represents the continuous-phase modulated carrier wave.

  3. Quadrature Modulation (Optional)

    GMSK can also be represented using In-phase (I) and Quadrature (Q) components:

    s(t) = cos(θ(t)) ⋅ cos(2Ï€fct) - sin(θ(t)) ⋅ sin(2Ï€fct)

    This representation is particularly useful in software-defined radios for demodulation and analysis.

     




    Figure: The above figure shows that an NRZ signal is filtered through a Gaussian filter, after which the carrier signal is modulated according to the accumulated phase of the message signal

Core Concept of GMSK Modulation

  • Key Feature: Continuous phase changes based on the integrated filtered signal prevent abrupt phase jumps.
  • Simplicity: GMSK, derived from FSK, is spectrally efficient due to its constant amplitude property.

Gaussian Minimum Shift Keying (GMSK) Simulator

GMSK Modulated Signal (Real Part)

GMSK Modulated Signal (Imaginary Part)






MSK and GMSK: Understanding the Relationship

  1. MSK Basics

    Minimum Shift Keying (MSK) is a form of continuous phase frequency shift keying (CPFSK) where the frequency shift is minimized, ensuring smooth phase transitions.

  2. GMSK as MSK with Gaussian Filtering

    GMSK extends MSK by applying Gaussian filtering to the binary data before modulation, enhancing spectral efficiency.

  3. Key Differences Between MSK and GMSK
    • MSK uses direct binary modulation with minimal frequency shifts, while GMSK introduces Gaussian filtering for smoother transitions, resulting in better spectral efficiency.

 

Simulation Results for GMSK

Original Message signal 

  
 
 

 Gaussian Filtered Signal

 
 
 

Phase Accumulation (Integration of Filtered Signal) (Real Part)

 
 
 
 

Phase Accumulation (Integration of Filtered Signal) (Imaginary Part)





 

Explore Signal Processing Simulations

Conclusion

GMSK modulation combines the principles of MSK with Gaussian filtering, enhancing its performance in mobile communication systems. By smoothing phase transitions, GMSK ensures both constant envelope and continuous phase transitions, making it a powerful technique in modern digital communication.

Read more about

[1] MATLAB Code for GMSK

[2]  Minimum Shift Keying (MSK)

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diffe...

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems clc; clear; close all; %% Parameters Nt = 4; % Transmit antennas Nr = 4; % Receive antennas (must be >= Nt for ZFBF) numBits = 1e4; % Number of bits per stream SNRdB = 0; % SNR in dB numRuns = 100; % Number of independent runs for averaging %% Precompute noise standard deviation noiseSigma = 10^(-SNRdB / 20); %% Accumulator for total errors totalErrors = 0; for run = 1:numRuns % Generate random bits: [4 x 10000] bits = randi([0 1], Nt, numBits); % BPSK modulation: 0 → +1, 1 → -1 txSymbols = 1 - 2 * bits; % Rayleigh channel matrix: [4 x 4] H = (randn(Nr, Nt) + 1j * randn(Nr, Nt)) / sqrt(2); %% === Zero Forcing Beamforming at Transmitter === W_zf = pinv(H); % Precoding matrix: [Nt x Nr] txPrecoded = W_zf * txSymbols; % Apply ZF precoding % Normalize transmit power (optional but useful) txPrecoded = txPrecoded / sqrt(mean(abs(txPrecoded(:)).^2)); %% Channel transmission with AWGN noise = noiseSigma * (randn(...

Constellation Diagram of FSK in Detail

📘 Overview 🧮 Simulator for constellation diagram of FSK 🧮 Theory 🧮 MATLAB Code 📚 Further Reading   Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK) . Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel. Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'. Simulator for 2-FSK Constellation Diagram Simulator for 2-FSK Constellation Diagram SNR (dB): ...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Understanding the Q...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)}  Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). Total number of samples (N): The number of samples in the time-domain signal used for the DFT/FFT.   Suppose:    ...