Skip to main content

Gaussian minimum shift keying (GMSK)



Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems!

Core Process of GMSK Modulation

  1. Phase Accumulation (Integration of Filtered Signal)

    After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal:

    θ(t) = ∫0t mfiltered(Ï„) dÏ„

    This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes.

  2. Phase Modulation

    The next step involves using the phase signal to modulate a high-frequency carrier wave:

    s(t) = cos(2πfct + θ(t))

    Here, fc is the carrier frequency, and s(t) represents the continuous-phase modulated carrier wave.

  3. Quadrature Modulation (Optional)

    GMSK can also be represented using In-phase (I) and Quadrature (Q) components:

    s(t) = cos(θ(t)) ⋅ cos(2Ï€fct) - sin(θ(t)) ⋅ sin(2Ï€fct)

    This representation is particularly useful in software-defined radios for demodulation and analysis.

     




    Figure: The above figure shows that an NRZ signal is filtered through a Gaussian filter, after which the carrier signal is modulated according to the accumulated phase of the message signal

Core Concept of GMSK Modulation

  • Key Feature: Continuous phase changes based on the integrated filtered signal prevent abrupt phase jumps.
  • Simplicity: GMSK, derived from FSK, is spectrally efficient due to its constant amplitude property.

Gaussian Minimum Shift Keying (GMSK) Simulator

GMSK Modulated Signal (Real Part)

GMSK Modulated Signal (Imaginary Part)






MSK and GMSK: Understanding the Relationship

  1. MSK Basics

    Minimum Shift Keying (MSK) is a form of continuous phase frequency shift keying (CPFSK) where the frequency shift is minimized, ensuring smooth phase transitions.

  2. GMSK as MSK with Gaussian Filtering

    GMSK extends MSK by applying Gaussian filtering to the binary data before modulation, enhancing spectral efficiency.

  3. Key Differences Between MSK and GMSK
    • MSK uses direct binary modulation with minimal frequency shifts, while GMSK introduces Gaussian filtering for smoother transitions, resulting in better spectral efficiency.

 

Simulation Results for GMSK

Original Message signal 

  
 
 

 Gaussian Filtered Signal

 
 
 

Phase Accumulation (Integration of Filtered Signal) (Real Part)

 
 
 
 

Phase Accumulation (Integration of Filtered Signal) (Imaginary Part)





 

Explore Signal Processing Simulations

Conclusion

GMSK modulation combines the principles of MSK with Gaussian filtering, enhancing its performance in mobile communication systems. By smoothing phase transitions, GMSK ensures both constant envelope and continuous phase transitions, making it a powerful technique in modern digital communication.


Q & A and Summary

1. What is the role of the Gaussian filter in GMSK, and how does it improve spectral efficiency?

Answer: The Gaussian filter in GMSK is used to shape the data pulses before modulation. It smooths out the sharp transitions between symbols, further reducing the sidebands and improving spectral efficiency. By applying this pre-modulation filtering, the GMSK signal has better frequency localization, allowing it to fit more efficiently into the allocated bandwidth, while still maintaining a constant envelope for better amplifier performance.

2. How does GMSK achieve a trade-off between spectral efficiency and inter-symbol interference (ISI)?

Answer: GMSK achieves a balance between spectral efficiency and inter-symbol interference (ISI) through the bandwidth-time product \(BT\) of the Gaussian filter. A higher \(BT\) value results in better spectral efficiency but introduces more ISI, while a lower value reduces ISI but lowers spectral efficiency. The optimal value of \(BT\) depends on the communication system's needs, balancing efficient use of bandwidth with manageable levels of ISI.

3. How does the Gaussian Minimum Shift Keying (GMSK) address the issue of inter-symbol interference (ISI)?

Answer: GMSK mitigates the problem of inter-symbol interference (ISI) through the use of a Gaussian filter that smooths the phase transitions. However, this filtering introduces some ISI, which can affect demodulation. To counter this, more sophisticated equalization techniques are often used at the receiver to minimize the effects of ISI and accurately recover the transmitted data. Despite this, GMSK remains an attractive option due to its spectral efficiency and constant-envelope property.


Read more about

[1] MATLAB Code for GMSK

[2]  Minimum Shift Keying (MSK)

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Periodogram in MATLAB

Power Spectral Density Estimation Using the Periodogram Step 1: Signal Representation Let the signal be x[n] , where: n = 0, 1, ..., N-1 (discrete-time indices), N is the total number of samples. Step 2: Compute the Discrete-Time Fourier Transform (DTFT) The DTFT of x[n] is: X(f) = ∑ x[n] e -j2Ï€fn For practical computation, the Discrete Fourier Transform (DFT) is used: X[k] = ∑ x[n] e -j(2Ï€/N)kn , k = 0, 1, ..., N-1 k represents discrete frequency bins, f_k = k/N * f_s , where f_s is the sampling frequency. Step 3: Compute Power Spectral Density (PSD) The periodogram estimates the PSD as: S_x(f_k) = (1/N) |X[k]|² S_x(f_k) ...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Constellation Diagram of ASK in Detail

A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024]  UGC Net Paper 1 With Answer Key Download Pdf [Sep 2024] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [Sep 2024]  UGC Net Paper 1 With Answer Key Download Pdf [June 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...