Skip to main content

Gaussian minimum shift keying (GMSK)



Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems!

Core Process of GMSK Modulation

  1. Phase Accumulation (Integration of Filtered Signal)

    After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal:

    θ(t) = ∫0t mfiltered(Ī„) dĪ„

    This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes.

  2. Phase Modulation

    The next step involves using the phase signal to modulate a high-frequency carrier wave:

    s(t) = cos(2Ī€fct + θ(t))

    Here, fc is the carrier frequency, and s(t) represents the continuous-phase modulated carrier wave.

  3. Quadrature Modulation (Optional)

    GMSK can also be represented using In-phase (I) and Quadrature (Q) components:

    s(t) = cos(θ(t)) ⋅ cos(2Ī€fct) - sin(θ(t)) ⋅ sin(2Ī€fct)

    This representation is particularly useful in software-defined radios for demodulation and analysis.

     




    Figure: The above figure shows that an NRZ signal is filtered through a Gaussian filter, after which the carrier signal is modulated according to the accumulated phase of the message signal

Core Concept of GMSK Modulation

  • Key Feature: Continuous phase changes based on the integrated filtered signal prevent abrupt phase jumps.
  • Simplicity: GMSK, derived from FSK, is spectrally efficient due to its constant amplitude property.

Gaussian Minimum Shift Keying (GMSK) Simulator

GMSK Modulated Signal (Real Part)

GMSK Modulated Signal (Imaginary Part)






MSK and GMSK: Understanding the Relationship

  1. MSK Basics

    Minimum Shift Keying (MSK) is a form of continuous phase frequency shift keying (CPFSK) where the frequency shift is minimized, ensuring smooth phase transitions.

  2. GMSK as MSK with Gaussian Filtering

    GMSK extends MSK by applying Gaussian filtering to the binary data before modulation, enhancing spectral efficiency.

  3. Key Differences Between MSK and GMSK
    • MSK uses direct binary modulation with minimal frequency shifts, while GMSK introduces Gaussian filtering for smoother transitions, resulting in better spectral efficiency.

 

Simulation Results for GMSK

Original Message signal 

  
 
 

 Gaussian Filtered Signal

 
 
 

Phase Accumulation (Integration of Filtered Signal) (Real Part)

 
 
 
 

Phase Accumulation (Integration of Filtered Signal) (Imaginary Part)





 

Explore Signal Processing Simulations

Conclusion

GMSK modulation combines the principles of MSK with Gaussian filtering, enhancing its performance in mobile communication systems. By smoothing phase transitions, GMSK ensures both constant envelope and continuous phase transitions, making it a powerful technique in modern digital communication.


Q & A and Summary

1. What is the role of the Gaussian filter in GMSK, and how does it improve spectral efficiency?

Answer: The Gaussian filter in GMSK is used to shape the data pulses before modulation. It smooths out the sharp transitions between symbols, further reducing the sidebands and improving spectral efficiency. By applying this pre-modulation filtering, the GMSK signal has better frequency localization, allowing it to fit more efficiently into the allocated bandwidth, while still maintaining a constant envelope for better amplifier performance.

2. How does GMSK achieve a trade-off between spectral efficiency and inter-symbol interference (ISI)?

Answer: GMSK achieves a balance between spectral efficiency and inter-symbol interference (ISI) through the bandwidth-time product \(BT\) of the Gaussian filter. A higher \(BT\) value results in better spectral efficiency but introduces more ISI, while a lower value reduces ISI but lowers spectral efficiency. The optimal value of \(BT\) depends on the communication system's needs, balancing efficient use of bandwidth with manageable levels of ISI.

3. How does the Gaussian Minimum Shift Keying (GMSK) address the issue of inter-symbol interference (ISI)?

Answer: GMSK mitigates the problem of inter-symbol interference (ISI) through the use of a Gaussian filter that smooths the phase transitions. However, this filtering introduces some ISI, which can affect demodulation. To counter this, more sophisticated equalization techniques are often used at the receiver to minimize the effects of ISI and accurately recover the transmitted data. Despite this, GMSK remains an attractive option due to its spectral efficiency and constant-envelope property.


Read more about

[1] MATLAB Code for GMSK

[2]  Minimum Shift Keying (MSK)

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR va...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...