Skip to main content

Gaussian minimum shift keying (GMSK)



Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems!

Core Process of GMSK Modulation

  1. Phase Accumulation (Integration of Filtered Signal)

    After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal:

    θ(t) = ∫0t mfiltered(Ï„) dÏ„

    This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes.

  2. Phase Modulation

    The next step involves using the phase signal to modulate a high-frequency carrier wave:

    s(t) = cos(2πfct + θ(t))

    Here, fc is the carrier frequency, and s(t) represents the continuous-phase modulated carrier wave.

  3. Quadrature Modulation (Optional)

    GMSK can also be represented using In-phase (I) and Quadrature (Q) components:

    s(t) = cos(θ(t)) ⋅ cos(2Ï€fct) - sin(θ(t)) ⋅ sin(2Ï€fct)

    This representation is particularly useful in software-defined radios for demodulation and analysis.

     




    Figure: The above figure shows that an NRZ signal is filtered through a Gaussian filter, after which the carrier signal is modulated according to the accumulated phase of the message signal

Core Concept of GMSK Modulation

  • Key Feature: Continuous phase changes based on the integrated filtered signal prevent abrupt phase jumps.
  • Simplicity: GMSK, derived from FSK, is spectrally efficient due to its constant amplitude property.

Gaussian Minimum Shift Keying (GMSK) Simulator

GMSK Modulated Signal (Real Part)

GMSK Modulated Signal (Imaginary Part)






MSK and GMSK: Understanding the Relationship

  1. MSK Basics

    Minimum Shift Keying (MSK) is a form of continuous phase frequency shift keying (CPFSK) where the frequency shift is minimized, ensuring smooth phase transitions.

  2. GMSK as MSK with Gaussian Filtering

    GMSK extends MSK by applying Gaussian filtering to the binary data before modulation, enhancing spectral efficiency.

  3. Key Differences Between MSK and GMSK
    • MSK uses direct binary modulation with minimal frequency shifts, while GMSK introduces Gaussian filtering for smoother transitions, resulting in better spectral efficiency.

 

Simulation Results for GMSK

Original Message signal 

  
 
 

 Gaussian Filtered Signal

 
 
 

Phase Accumulation (Integration of Filtered Signal) (Real Part)

 
 
 
 

Phase Accumulation (Integration of Filtered Signal) (Imaginary Part)





 

Explore Signal Processing Simulations

Conclusion

GMSK modulation combines the principles of MSK with Gaussian filtering, enhancing its performance in mobile communication systems. By smoothing phase transitions, GMSK ensures both constant envelope and continuous phase transitions, making it a powerful technique in modern digital communication.


Q & A and Summary

1. What is the role of the Gaussian filter in GMSK, and how does it improve spectral efficiency?

Answer: The Gaussian filter in GMSK is used to shape the data pulses before modulation. It smooths out the sharp transitions between symbols, further reducing the sidebands and improving spectral efficiency. By applying this pre-modulation filtering, the GMSK signal has better frequency localization, allowing it to fit more efficiently into the allocated bandwidth, while still maintaining a constant envelope for better amplifier performance.

2. How does GMSK achieve a trade-off between spectral efficiency and inter-symbol interference (ISI)?

Answer: GMSK achieves a balance between spectral efficiency and inter-symbol interference (ISI) through the bandwidth-time product \(BT\) of the Gaussian filter. A higher \(BT\) value results in better spectral efficiency but introduces more ISI, while a lower value reduces ISI but lowers spectral efficiency. The optimal value of \(BT\) depends on the communication system's needs, balancing efficient use of bandwidth with manageable levels of ISI.

3. How does the Gaussian Minimum Shift Keying (GMSK) address the issue of inter-symbol interference (ISI)?

Answer: GMSK mitigates the problem of inter-symbol interference (ISI) through the use of a Gaussian filter that smooths the phase transitions. However, this filtering introduces some ISI, which can affect demodulation. To counter this, more sophisticated equalization techniques are often used at the receiver to minimize the effects of ISI and accurately recover the transmitted data. Despite this, GMSK remains an attractive option due to its spectral efficiency and constant-envelope property.


Read more about

[1] MATLAB Code for GMSK

[2]  Minimum Shift Keying (MSK)

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to add...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) 📘 Overview & Theory 📘 How does the channel impulse response affect the signal? 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ(...

Drone Detection via Low Complexity Zadoff-Chu Sequence Root Estimation

Summary Based on  Yeung, 2025:  Yeung, C.K.A., Lo, B.F. and Torborg, S. Drone detection via low complexity zadoff-chu sequence root estimation. In 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC) (pp. 1-4). IEEE, 2020, January.   The rise in drone usage—from agriculture and delivery to surveillance and racing—has introduced major privacy and security challenges. Modern drones often use OFDM (Orthogonal Frequency Division Multiplexing) with Zadoff-Chu (ZC) sequences for synchronization. While powerful, detecting these sequences blindly (without knowing their parameters) remains a challenge. Aim This article presents a low-complexity solution to blindly detect ZC sequences used by unknown drones. The approach uses a novel double differential method that works without large correlation banks, making it efficient and real-time capable. ZC Sequence Fundamentals A ZC sequence of prime length P and roo...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the vari...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for ...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Understanding the Q...