Skip to main content

Calculation of SNR from FFT bins in MATLAB


 

Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal. 

The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined using a modified Bessel function of the first kind.

 

 Steps

  1. Set up the sampling rate and time vector
  2. Compute the FFT and periodogram
  3. Plot the periodogram using FFT
  4. Specify parameters for Kaiser window and periodogram
  5. Calculate the frequency resolution and signal power
  6. Exclude the signal power from noise calculation
  7. Compute the noise power
  8. Calculate the SNR
 

MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal

clc;
clear;
close all;

% Parameters
fs = 8000; % Sampling frequency (Hz)
f_tone = 1000; % Tone frequency (Hz)
N = 8192; % Use large N so 1000 Hz aligns with an FFT bin
t = (0:N-1)/fs; % Time vector

% Generate 1 kHz sine wave
signal = sin(2*pi*f_tone*t);

% Add white Gaussian noise
SNR_true_dB = 20; % Desired true SNR in dB
signal_power = mean(signal.^2);
noise_power = signal_power / (10^(SNR_true_dB/10));
noise = sqrt(noise_power) * randn(1, N);
noisy_signal = signal + noise;

% Apply window to reduce leakage
w = hamming(N)';
windowed_signal = noisy_signal .* w;
U = sum(w.^2)/N; % Window power normalization factor

% FFT
X = fft(windowed_signal);
f = (0:N-1)*fs/N;

% Power spectrum
Pxx = abs(X).^2 / (fs * N * U); % Proper normalization for PSD

% Find signal bin (closest to 1 kHz)
[~, signal_bin] = min(abs(f - f_tone));

% Estimate signal power from ±1 bins around 1 kHz
signal_bins = signal_bin-1 : signal_bin+1;
signal_power_est = sum(Pxx(signal_bins));

% Estimate noise power from all other bins
noise_bins = setdiff(1:N/2, signal_bins); % Use only one-sided spectrum
noise_power_est = sum(Pxx(noise_bins));

% Estimate SNR
SNR_est = signal_power_est / noise_power_est;
SNR_est_dB = 10 * log10(SNR_est);

% Print results
fprintf('True SNR: %.2f dB\n', SNR_true_dB);
fprintf('Estimated SNR from FFT: %.2f dB\n', SNR_est_dB);

% Plot
figure;
plot(f(1:N/2), 10*log10(Pxx(1:N/2)));
xlim([0 fs/2]);
xlabel('Frequency (Hz)');
ylabel('Power/Frequency (dB/Hz)');
title('Power Spectrum of Noisy Signal with Hamming Window');
grid on;

Output

True SNR: 20.00 dB
Estimated SNR from FFT: 19.77 dB
 

 
 
 
 
 
 
 

MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data

clc; clear ; close all;
fs = 32000;
t = 0:1/fs:1-1/fs;

 x=load("x2.mat");
 x = x.x2;

N = length(x);
xdft = fft(x);
xdft = xdft(1:N/2+1);
psdx = (1/(fs*N)) * abs(xdft).^2;
psdx(2:end-1) = 2*psdx(2:end-1);
freq = 0:fs/length(x):fs/2;

figure; plot(freq,pow2db(psdx))
grid on
title("Periodogram Using FFT")
xlabel("Frequency (Hz)")
ylabel("Power/Frequency (dB/Hz)")

%rng default
Fi = 3000;
Fs = 32e3;
N = 1024;%2048;


w = kaiser(numel(x),38);
[Pxx, F] = periodogram(x,w,numel(x),Fs);
SNR_periodogram = snr(Pxx,F,'psd')

freq_resolution= abs(F(2)-F(3));
Signal_power= Pxx(3000); % p

s=sum((Signal_power), 1); s=s/length(Signal_power); s=abs(s);
Sig_power=pow2db(freq_resolution*s)

exclude_range = pxx(3000);
Noise_power = Pxx;
Noise_power(exclude_range) = 0; % Set the values in the specified range to zero

% Noise_power= Pxx(20001:24001); %x,y,z
n=sum((Noise_power), 1)/length(Noise_power); n=abs(n);
N_power=pow2db(freq_resolution*n)

SNR=Sig_power-N_power 

Output

 
 
 
 
 SNR =  25.8906 (in dB)


 

Copy the code from here


 

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

📘 Overview of Delay Spread and Multi-path 🧮 Excess Delay spread 🧮 Power delay Profile 🧮 RMS Delay Spread 📚 Further Reading 📂 Other Topics on RMS Delay Spread, Excess Delay ... 🧮 Multipath Components or MPCs 🧮 Online Simulator for Calculating RMS Delay Spread 🧮 Why is there significant multipath in the case of very high frequencies? 🧮 Why RMS Delay Spread is essential for wireless communication? 🧮 Why the Power Delay Profile is essential? 🧮 MATLAB Codes for Calculating Different Types of delay Spreads Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

ASK, FSK, and PSK

📘 Overview 📘 Amplitude Shift Keying (ASK) 📘 Frequency Shift Keying (FSK) 📘 Phase Shift Keying (PSK) 📘 Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? 🧮 MATLAB Codes 📘 Simulator for binary ASK, FSK, and PSK Modulation 📚 Further Reading ASK or OFF ON Keying ASK is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals. For example, "+5 Volt" (upper level) and "0 Volt" (lower level). To transmit binary bit "1", the transmitter sends "+5 Volts", and for bit "0", it sends no power. The receiver uses filters to detect whether a binary "1" or "0" was transmitted. ...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...