Skip to main content

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation


 

Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal

MATLAB Script

clc;

clear all;

close all;

fm= 10; % frequency of the message signal

fc= 100; % frequency of the carrier signal

fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor)

t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz)

m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal)

c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc

s=m.*c; % modulated signal (multiplication of element by element)

subplot(4,1,1);

plot(t,m);

title('Message signal');

xlabel ('Time');

ylabel('Amplitude');

subplot(4,1,2);

plot(t,c);

title('Carrier signal');

xlabel('Time');

ylabel('Amplitude');

subplot(4,1,3);

plot(t,s);

title('Modulated signal');

xlabel('Time');

ylabel('Amplitude');

%demdulated

d=s.*c; % At receiver, received signal is multiplied by carrier signal

filter=fir1(200,fm/fs,'low'); % low-pass FIR filter which order is 200

% here fm is the cut-off frequency and the fs is the sampling frequency

original_t_signal=conv(filter,d); % convolution of demodulated signal with filter %coefficient

t1=0:1/(length(original_t_signal)-1):1;

subplot(4,1,4);

plot(t1,original_t_signal);

title('demodulated signal');

xlabel('time');

ylabel('amplitude');

web('https://www.salimwireless.com/search?q=pulse%20amplitude%20modulation', '-browser');

 Output

 

Copy the code from here

 


Another Code for Pulse Amplitude Modulation and Demodulation of an Analog Message Signal 

MATLAB Script

 clc;
clear;
close all;

% Parameters
messageFrequency = 2;   % Message frequency in Hz
carrierFrequency = 20;  % Carrier frequency in Hz
samplingFrequency = 1000; % Sampling frequency in Hz
duration = 1;           % Signal duration in seconds
A = 1;                  % Amplitude of the signals

% Time vector
t = 0:1/samplingFrequency:duration;

% Message signal (sinusoidal)
messageSignal = A * sin(2 * pi * messageFrequency * t);

% Carrier signal (square wave)
carrierSignal = A * square(2 * pi * carrierFrequency * t);

% PAM signal
pamSignal = messageSignal .* (carrierSignal > 0);

% Plotting
figure;
subplot(3,1,1);
plot(t, messageSignal);
title('Message Signal');
xlabel('Time (s)');
ylabel('Amplitude');

subplot(3,1,2);
plot(t, carrierSignal);
title('Carrier Signal');
xlabel('Time (s)');
ylabel('Amplitude');

subplot(3,1,3);
plot(t, pamSignal);
title('PAM Signal');
xlabel('Time (s)');
ylabel('Amplitude');
web('https://www.salimwireless.com/search?q=pulse%20amplitude%20modulation', '-browser');

Copy the Code from here

 

Pulse Amplitude Modulation (PAM) & Demodulation for Digital Data

% The code is written by SalimWireless.Com
clc;
clear;
close all;


% PAM Modulation and Demodulation Example


% Parameters
M = 8; % PAM order (8-PAM)
numSymbols = 100; % Number of symbols to transmit
Fs = 1000; % Sampling frequency
T = 1; % Symbol duration


% Generate random data
data = randi([0 M-1], 1, numSymbols); % Random data symbols


% PAM Modulation
% Map the data symbols to PAM levels
pamLevels = linspace(-M + 1, M - 1, M); % PAM levels
modulatedSignal = pamLevels(data + 1); % Map data to PAM levels


% Create a time vector
t = 0:1/Fs:T*numSymbols-1/Fs;


% Upsample and create PAM signal
upsampledSignal = zeros(1, length(t));
for i = 1:numSymbols
upsampledSignal((i-1)*Fs+1:i*Fs) = modulatedSignal(i);
end


% Add some noise
snr = 20; % Signal-to-noise ratio
noisySignal = awgn(upsampledSignal, snr, 'measured');


% PAM Demodulation
% Sample the noisy signal at symbol rate
receivedSymbols = noisySignal(1:Fs:end);


% Map received symbols to nearest PAM level
demodulatedData = zeros(1, numSymbols);
for i = 1:numSymbols
[~, demodulatedData(i)] = min(abs(receivedSymbols(i) - pamLevels));
end


% Plotting
figure;
subplot(4,1,1);
stem(data);
title('Original Data');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,2);
plot(t, upsampledSignal);
title('Transmitted PAM Signal');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,3);
plot(t, noisySignal);
title('Received Noisy PAM Signal');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,4);
stem(demodulatedData);
title('Demodulated Data');
xlabel('Symbol Index');
ylabel('PAM Level');
grid on;


% Display results
disp('Original Data:');
disp(data);
disp('Demodulated Data:');
disp(demodulatedData);
web('https://www.salimwireless.com/search?q=pulse%20amplitude%20modulation', '-browser');

Output






Copy the MATLAB Code from here



Simulation Results for comparison of PAM, PWM, PPM, DM, and PCM

 
 
 

  
 

 
 
 
 

 
 
 

Explore Signal Processing Simulations

Further Reading

  1. Pulse Amplitude Modulation and Demodulation theory
  2. Is PAM a Digital Modulation Technique ?
  3. Pulse Width Modulation (PWM) and Demodulation
  4. Pulse Position Modulation (PPM) and Demodulation
  5. Delta Modulation and demodulation
  6. Pulse Code Modulation (PCM)
  7. Quantization Signal to Noise Ration (Q-SNR)
  8. MATLAB Code for Pulse Width Modulation and Demodulation
  9. MATLAB Code for Pulse Position Modulation (PPM) and Demodulation
  10. MATLAB Code for Pulse Code Modulation (PCM) and demodulation

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Comparisons among ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for calculating Bandwidth of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on Comparisons among ASK, PSK, and FSK ... ๐Ÿงฎ Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

๐Ÿงฎ MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together ๐Ÿงฎ MATLAB Code for M-ary QAM ๐Ÿงฎ MATLAB Code for M-ary PSK ๐Ÿ“š Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for ...

MATLAB code for GMSK

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Codes for GMSK ๐Ÿงฎ Online Simulator for GMSK ๐Ÿงฎ Simulation Results for GMSK ๐Ÿ“š Further Reading   Copy the MATLAB code from here  % The code is developed by SalimWireless.com clc; clear; close all; % Parameters samples_per_bit = 36; bit_duration = 1; num_bits = 20; sample_interval = bit_duration / samples_per_bit; time_vector = 0:sample_interval:(num_bits * bit_duration); time_vector(end) = []; % Generate and modulate binary data binary_data = randi([0, 1], 1, num_bits); modulated_bits = 2 * binary_data - 1; upsampled_signal = kron(modulated_bits, ones(1, samples_per_bit)); figure; plot(time_vector, upsampled_signal); title('Message Signal'); % Apply Gaussian filter filtered_signal = conv(GMSK_gaussian_filter1(bit_duration, samples_per_bit), upsampled_signal); filtered_signal = [filtered_signal, filtered_signal(end)]; figure; plot(filtered_signal); title('Filtered Signal'); % Integration ...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

๐Ÿ“˜ Overview ๐Ÿงฎ How to use MATLAB Simulink ๐Ÿงฎ Simulation of ASK using MATLAB Simulink ๐Ÿงฎ Simulation of FSK using MATLAB Simulink ๐Ÿงฎ Simulation of PSK using MATLAB Simulink ๐Ÿงฎ Simulator for ASK, FSK, and PSK ๐Ÿงฎ Digital Signal Processing Simulator ๐Ÿ“š Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

MATLAB Code for ASK, FSK, and PSK

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code for ASK ๐Ÿงฎ MATLAB Code for FSK ๐Ÿงฎ MATLAB Code for PSK ๐Ÿงฎ Simulator for binary ASK, FSK, and PSK Modulations ๐Ÿ“š Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); ...