Skip to main content

Pulse Amplitude Modulation and Demodulation



 Pulse Amplitude Modulation (PAM)

Sampling allow us to represent real world continuous signal, such as audio or video, in a format suitable for digital processing and storage. This sampled discrete-time signal is inherently digital. A digital signal is a discrete-time signal that is further quantized in amplitude.

Pulse Amplitude modulation (PAM) is the modulation technique in which amplitude of carrier pulses is made to vary in accordance with the input message signal, similar to Amplitude Modulation (AM). But here we use pulse generator as carrier signal. So, Pulse–amplitude modulation (PAM) is a form of signal modulation where the message information is encoded in the amplitude of a series of signal pulses.


 Fig 1: Pulse Amplitude Modulation




The basic idea in PAM for communication over a Continuous Time (CT) channel is to transmit a sequence of Continuous Time pulses of some per-specified pulse shape, with the sequence of pulse amplitudes carrying the information. 


 Pulse Amplitude Demodulation

To demodulate a PAM signal, pass it through a reconstruction filter. As here, the amplitude of the pulse carrier is varied according to the amplitude of the message signal, we only need to pass this received pulse signal through a low-pass filter with a cut-off frequency the same as the message signal or slightly higher.


If you perform quantization at the transmitter side and assign some levels (amplitude levels), then demodulation is performed by detecting the amplitude level of the carrier at every single period. The number of possible pulse amplitudes in analog PAM is theoretically infinite. Digital PAM reduces the number of pulse amplitudes to some power of two. For example, in 4-level PAM there are (2^2 = 4) possible discrete pulse amplitudes; in 8-level PAM there are (2^3 = 8) possible discrete pulse amplitudes; and in 16-level PAM there are (2^4 = 16) possible discrete pulse amplitudes.
 

Further Reading 

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Hybrid Beamforming | Page 2

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | clear all; close all; clc; Nt = 64; Nr = 16; NtRF = 4; NrRF = 4; At both the transmitter and receiver ends, there are four RF chains only for a hybrid beamforming system. Alternatively, every 16 antenna elements on the transmitter side is connected to a single RF chain, while every 4 antenna elements on the receiver side are connected to a single RF chain. Mixers, amplifiers, and other critical wireless communication components make up the RF chain. Now, in the case of hybrid beamforming, there can be four different data streams between the transmitter and receiver, as both sides have four RF chains, each of which is accountable for a separate data stream. For Analog Beamforming: All 64 Tx antenna elements create a beam or focus the resultant correlated signal spread from adjacent antennas to a particular direction. Similarly, it may be used for beam...

Theoretical BER vs SNR for binary ASK and FSK

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Theoretical Ber vs SNR for Amplitude Shift Keying (ASK) The theoretical bit error rate (BER) for binary Amplitude Shift Keying (ASK) as a function of the signal-to-noise ratio (SNR) can be derived using the following expression: If we map the binary signals to 1 and -1 in ASK , the probability of bit error will be: BER = Q(√(2*SNR))   If we map the binary signals to 0 and 1 in ASK , the probability of bit error will be:    BER = Q(√(SNR/2))   Where: Q(x) is the Q-function, which is the tail probability of the standard normal distribution. SNR is the signal-to-noise ratio. N0 is the noise power spectral density. Where Q is the Q function In mathematics Q(x) = 0.5 * erfc(x/ √ 2)   Calculate the Probability of Error using Q-function for ASK: For ASK with amplitudes 0 and 1 : When bit '0' is transmitted, the received signal is noise only . When bit '1' is transmitted, the re...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) ๐Ÿ“˜ Overview & Theory ๐Ÿ“˜ How does the channel impulse response affect the signal? ๐Ÿงฎ Online Channel Impulse Response Simulator ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) ฮด( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  ฮด(...

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems clc; clear; close all; %% Parameters Nt = 4; % Transmit antennas Nr = 4; % Receive antennas (must be >= Nt for ZFBF) numBits = 1e4; % Number of bits per stream SNRdB = 0; % SNR in dB numRuns = 100; % Number of independent runs for averaging %% Precompute noise standard deviation noiseSigma = 10^(-SNRdB / 20); %% Accumulator for total errors totalErrors = 0; for run = 1:numRuns % Generate random bits: [4 x 10000] bits = randi([0 1], Nt, numBits); % BPSK modulation: 0 → +1, 1 → -1 txSymbols = 1 - 2 * bits; % Rayleigh channel matrix: [4 x 4] H = (randn(Nr, Nt) + 1j * randn(Nr, Nt)) / sqrt(2); %% === Zero Forcing Beamforming at Transmitter === W_zf = pinv(H); % Precoding matrix: [Nt x Nr] txPrecoded = W_zf * txSymbols; % Apply ZF precoding % Normalize transmit power (optional but useful) txPrecoded = txPrecoded / sqrt(mean(abs(txPrecoded(:)).^2)); %% Channel transmission with AWGN noise = noiseSigma * (randn(...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Comparisons among ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for calculating Bandwidth of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on Comparisons among ASK, PSK, and FSK ... ๐Ÿงฎ Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

How Windowing Affects Your Periodogram

The windowed periodogram is a widely used technique for estimating the Power Spectral Density (PSD) of a signal. It enhances the classical periodogram by mitigating spectral leakage through the application of a windowing function. This technique is essential in signal processing for accurate frequency-domain analysis.   Power Spectral Density (PSD) The PSD characterizes how the power of a signal is distributed across different frequency components. For a discrete-time signal, the PSD is defined as the Fourier Transform of the signal’s autocorrelation function: S x (f) = FT{R x (ฯ„)} Here, R x (ฯ„)}is the autocorrelation function. FT : Fourier Transform   Classical Periodogram The periodogram is a non-parametric PSD estimation method based on the Discrete Fourier Transform (DFT): P x (f) = \(\frac{1}{N}\) X(f) 2 Here: X(f): DFT of the signal x(n) N: Signal length However, the classical periodogram suffers from spectral leakage due to abrupt truncation of the ...