Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Filters Computer Networks

Delta Modulation & Demodulation


Delta Modulation & Demodulation Technique



Another name for delta modulation is a 1-bit quantizer. As a result, compared to PCM or DPCM, less bandwidth is needed here.


We know that bandwidth (BW),


BW = nfs/2 .........(1)




Where n = number of bits per sample


          fs = Frequency of Sampling





To avoid the cause of under-sampling, fs cannot be decreased in the above equation 1 to decrease bandwidth (BW). To retrieve the intended signal at the receiver side, we must keep our sample frequency at least two times the frequency of the message signal.



Alternatively, fs > 2fm



In this case, fm stands for message signal frequency, which is often the highest frequency available in message transmission.




However, in delta modulation, the bandwidth will be reduced to the smallest amount feasible by picking the lowest possible value of n, i.e. 1 bit/sample.


Assume that Rb = nfs is the data rate.


As a result, Rb = fs (if n=1 bit/sample)


So, in the delta modulation scheme, we can say,



Bit rate = Pulse rate = Sampling rate



Because we're only allocating 1 bit/sample, the number of levels is L = 2^(1) = 2. In general, the highest level is represented by '+∆', while the lowest level is represented by '-∆'. From the quantizer value we decide whether the sampling bit is '1' or '0'.










In delta modulation, we actually accomplish the following:



We compare the current sample value to the prior sample value in this modulation. When the difference (also known as "error") value exceeds the threshold value, the value is detected as "1." In the same way, if it goes below the threshold value, it will be '0'.







Diagram:











                                                                       Fig: Delta Modulation



Here, the input of the quantizer,


e(nTs) = m(nTs) – m^(nTs)


Where, m(nTs) = current sample

m^(nTs) = previous sample

The difference between the current sample value and the previous sample value (or, e(nTs)) is the quantizer's input. The modulated signal is represented as bit '1' if the difference value is greater than the threshold value (say, 0 Volt); otherwise, it is represented as bit '0'.


With the use of diagrams, we'll now discuss delta modulation (DM) and demodulation at the receiver side.



Delta Demodulation


Assume there are two levels (due to the one-bit quantizer) or that the quantizer step value is '+∆' and '–∆' on the negative side. '+∆' indicates a higher level, whereas '-∆' indicates a lower level.


Take a look at the quantizer diagram below. If the difference (or error value) between the current sample value and the prior sample value exceeds the threshold value, the sample will be converted to bit '1' (For your convenience, let's say, the threshold is 0 Volt). If the above-mentioned difference value is between 0 and + ∆ Volt, we convert it to bit '1'. Similarly, we translate to bit '0'  for values between 0 and - ∆ Volt.




Diagram of DM Quantizer:








DM Encoder:









DM Decoder at receiver side:








In decoding process, at t=0, sample value = 0

At, t = Ts, sample value = 0+∆ = +∆

      t = 2Ts, sample value = +∆ +∆ = +2∆

      t = 3Ts, sample value = +2∆ +∆ = +3∆

      t = 4Ts, sample value = +3∆ -∆ = +2∆

      t = 5Ts, sample value = +2∆ -∆ = +∆


Whenever the signal reaches the receiver it was 0, at t=0 & t< Ts; At t=Ts, we receive +∆. Now, the summation of the present sample value and previous sample value (which is '0' at the start) equals 0 +∆= +∆; At t=2Ts,  the sum of the current sample value and previous sample value = +∆ +∆ = +2∆ and so on (as shown in the above chart).

 

Read also about

[1] MATLAB Code for Delta Modulation and Demodulation

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK ASK or OFF ON Keying Ask is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  then it transmits no power. But the receiver is intelligent enough to deflect whether you've sent binary bit  "1"  or  "0

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2018] UGC Net Electronic Science Questions With Answer Key Download Pdf [July 2018] UG

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal to Noise Ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power is twice as

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between two signals or symbols. Figure 1: Constellation diagrams of ASK, PSK, and FSK The constellation points for ASK, PSK, and FSK [↗] are located in a different pattern, and the distances between the constellation points vary. According to the above diagram, the distance between ASK constellation points is (√Eb -0) = √Eb (where Eb stands for energy per bit). From the above figure, you can also see the distances between constellation points for PSK and FSK are 2√Eb and √(2Eb), respectively. In a constellation diagram, if the distance between signaling points is less, then the probability

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear all; close all; EbN0=-4:1:24; % Signal to Noise Ratio per Bit (in dB) EbN0ratio=10.^(EbN0/10); % Converted into ratio colors={'k-*','r-h','g-o','c-s','m-s','y-*','k-p','b:s','m:d','g:p'}; index=1; %BPSK BPSK_BER = 0.5*erfc(sqrt(EbN0ratio)); plotHandle=plot(EbN0,log10(BPSK_BER),char(colors(index))); set(plotHandle,'LineWidth',1.7); hold on; index=index+1; %M-PSK m=2:1:5; M=2.^m; for i=M, k=log2(i); PSK_BER = 1/k*erfc(sqrt(EbN0ratio*k)*sin(pi/i)); plotHandle=plot

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;