Skip to main content

Quantization Signal to Noise Ratio (Q-SNR)



Quantization Explanation

For a signal varies from -8 V to +8 V, giving a total quantization range of 16 V. If the number of quantization levels is 4, the step size will be:

\[ v_{\min} = -8, \quad v_{\max} = 8, \quad L = 4 \]

Quantization step size:

\[ \Delta = \frac{v_{\max} - v_{\min}}{L} = \frac{8 - (-8)}{4} = \frac{16}{4} = 4 \]

Partition boundaries (decision levels):

\[ p_0 = -8, \quad p_1 = -8 + 4 = -4, \quad p_2 = 0, \quad p_3 = 4, \quad p_4 = 8 \]

Quantization codebook (reconstruction levels):

\[ c_i = v_{\min} + \left(i + \frac{1}{2}\right) \Delta, \quad i = 0, 1, 2, 3 \]

Calculate each codeword:

  • \[ c_0 = -8 + \left(0 + \frac{1}{2}\right) \times 4 = -8 + 2 = -6 \]
  • \[ c_1 = -8 + \left(1 + \frac{1}{2}\right) \times 4 = -8 + 6 = -2 \]
  • \[ c_2 = -8 + \left(2 + \frac{1}{2}\right) \times 4 = -8 + 10 = 2 \]
  • \[ c_3 = -8 + \left(3 + \frac{1}{2}\right) \times 4 = -8 + 14 = 6 \]

Quantization rule:

For an input \( x \), find \( i \) such that:

\[ p_i < x \leq p_{i+1} \]

then output quantized value:

\[ Q(x) = c_i \]

Summary:

Interval Output quantized value \( c_i \)
\(-8 < x \leq -4\) \(-6\)
\(-4 < x \leq 0\) \(-2\)
\(0 < x \leq 4\) \(2\)
\(4 < x \leq 8\) \(6\)

Explore the concept of Quantization Signal-to-Noise Ratio (SNR), a critical parameter in Pulse Code Modulation (PCM) that determines the fidelity of quantized signals in digital communication systems.

Core Concepts of Quantization SNR

  1. Definition of Quantization SNR

    Quantization SNR measures the ratio of the power of the quantized signal to the power of the quantization noise introduced during the quantization process.

    Psnr = Ps / Pq, Or, Psnr = Ps / (Δ² / 12) 

    Where Psnr is the quantization SNR, Ps is the average power of the signal, Pq is the quantization noise power, and Δ is the quantization step size.

  2. Importance in PCM

    In PCM systems, high quantization SNR ensures better signal reconstruction at the receiver, leading to improved quality and performance.

  3. Factors Affecting Quantization SNR
    • Step Size: Smaller step sizes lead to higher quantization SNR.
    • Signal Power: Higher average signal power results in better SNR.

Example of Quantization SNR Calculation

Consider a sine signal with an amplitude of 1. So, average power of the sine signal Ps = (1)^2 = 0.5  and a quantization step size of Δ = 0.25

The quantization noise power

Pq = (0.25² / 12) = 0.00520833 

 The quantization SNR can be calculated as follows:

Psnr = Ps / Pq  = 0.5 / 0.00520833 =  96 (Approx.) = 19.82 dB

This indicates that the quantization noise is significantly lower than the signal power, resulting in good signal quality.


Simulation of a typical PCM system using quantization for a signal varying from -8 V to 8 V










In the table above, the signal varies from -8 V to +8 V, giving a total quantization range of 16 V. If the number of quantization levels is 4, the step size will be:

Δ = 16 V / 4 = 4 V

The resulting signal-to-quantization-noise ratio (SQNR) is calculated as:

SQNRlinear = 4 / (((16 / inputSignalAmplitude)2) / 12) = 48

SQNRdB = 10 · log10(48) ≈ 16.80 dB

and so on.


Quantization Levels and Their Impact

The number of quantization levels directly influences the quantization SNR:

  • Increasing quantization levels improves the approximation of the original signal, enhancing SNR.
  • However, higher levels also require more bits for representation, leading to potential trade-offs in bandwidth.

Conclusion

Understanding Quantization SNR is essential for designing efficient digital communication systems. By optimizing quantization levels and step sizes, engineers can significantly enhance signal quality.


Further Reading

[1] Understanding Quantization in PCM

[2] ADC SNR Gain 

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR va...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Theoretical BER vs SNR for BPSK

Theoretical Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) for BPSK in AWGN Channel Let’s simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel. Key Points Fig. 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation Transmits one of two signals: +√Eb or −√Eb , where Eb is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel The channel adds Gaussian noise with zero mean and variance N₀/2 (where N₀ is the noise power spectral density). Receiver Decision The receiver decides if the received signal is closer to +√Eb (for bit 0) or −√Eb (for bit 1) . Bit Error Rat...