Skip to main content

Quantization Signal to Noise Ratio (Q-SNR)



Quantization Explanation

For a signal varies from -8 V to +8 V, giving a total quantization range of 16 V. If the number of quantization levels is 4, the step size will be:

\[ v_{\min} = -8, \quad v_{\max} = 8, \quad L = 4 \]

Quantization step size:

\[ \Delta = \frac{v_{\max} - v_{\min}}{L} = \frac{8 - (-8)}{4} = \frac{16}{4} = 4 \]

Partition boundaries (decision levels):

\[ p_0 = -8, \quad p_1 = -8 + 4 = -4, \quad p_2 = 0, \quad p_3 = 4, \quad p_4 = 8 \]

Quantization codebook (reconstruction levels):

\[ c_i = v_{\min} + \left(i + \frac{1}{2}\right) \Delta, \quad i = 0, 1, 2, 3 \]

Calculate each codeword:

  • \[ c_0 = -8 + \left(0 + \frac{1}{2}\right) \times 4 = -8 + 2 = -6 \]
  • \[ c_1 = -8 + \left(1 + \frac{1}{2}\right) \times 4 = -8 + 6 = -2 \]
  • \[ c_2 = -8 + \left(2 + \frac{1}{2}\right) \times 4 = -8 + 10 = 2 \]
  • \[ c_3 = -8 + \left(3 + \frac{1}{2}\right) \times 4 = -8 + 14 = 6 \]

Quantization rule:

For an input \( x \), find \( i \) such that:

\[ p_i < x \leq p_{i+1} \]

then output quantized value:

\[ Q(x) = c_i \]

Summary:

Interval Output quantized value \( c_i \)
\(-8 < x \leq -4\) \(-6\)
\(-4 < x \leq 0\) \(-2\)
\(0 < x \leq 4\) \(2\)
\(4 < x \leq 8\) \(6\)

Explore the concept of Quantization Signal-to-Noise Ratio (SNR), a critical parameter in Pulse Code Modulation (PCM) that determines the fidelity of quantized signals in digital communication systems.

Core Concepts of Quantization SNR

  1. Definition of Quantization SNR

    Quantization SNR measures the ratio of the power of the quantized signal to the power of the quantization noise introduced during the quantization process.

    Psnr = Ps / Pq, Or, Psnr = Ps / (ฮ”² / 12) 

    Where Psnr is the quantization SNR, Ps is the average power of the signal, Pq is the quantization noise power, and ฮ” is the quantization step size.

  2. Importance in PCM

    In PCM systems, high quantization SNR ensures better signal reconstruction at the receiver, leading to improved quality and performance.

  3. Factors Affecting Quantization SNR
    • Step Size: Smaller step sizes lead to higher quantization SNR.
    • Signal Power: Higher average signal power results in better SNR.

Example of Quantization SNR Calculation

Consider a sine signal with an amplitude of 1. So, average power of the sine signal Ps = (1)^2 = 0.5  and a quantization step size of ฮ” = 0.25

The quantization noise power

Pq = (0.25² / 12) = 0.00520833 

 The quantization SNR can be calculated as follows:

Psnr = Ps / Pq  = 0.5 / 0.00520833 =  96 (Approx.) = 19.82 dB

This indicates that the quantization noise is significantly lower than the signal power, resulting in good signal quality.


Simulation of a typical PCM system using quantization for a signal varying from -8 V to 8 V










In the table above, the signal varies from -8 V to +8 V, giving a total quantization range of 16 V. If the number of quantization levels is 4, the step size will be:

ฮ” = 16 V / 4 = 4 V

The resulting signal-to-quantization-noise ratio (SQNR) is calculated as:

SQNRlinear = 4 / (((16 / inputSignalAmplitude)2) / 12) = 48

SQNRdB = 10 · log10(48) ≈ 16.80 dB

and so on.


Quantization Levels and Their Impact

The number of quantization levels directly influences the quantization SNR:

  • Increasing quantization levels improves the approximation of the original signal, enhancing SNR.
  • However, higher levels also require more bits for representation, leading to potential trade-offs in bandwidth.

Conclusion

Understanding Quantization SNR is essential for designing efficient digital communication systems. By optimizing quantization levels and step sizes, engineers can significantly enhance signal quality.


Further Reading

[1] Understanding Quantization in PCM

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿ“˜ Amplitude Shift Keying (ASK) ๐Ÿ“˜ Frequency Shift Keying (FSK) ๐Ÿ“˜ Phase Shift Keying (PSK) ๐Ÿ“˜ Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? ๐Ÿงฎ MATLAB Codes ๐Ÿ“˜ Simulator for binary ASK, FSK, and PSK Modulation ๐Ÿ“š Further Reading   ASK or OFF ON Keying Ask is a simple (less complex)  Digital Modulation Scheme  where we vary the  modulation  signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  t...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

๐Ÿ“˜ Overview ๐Ÿงฎ Multipath Components or MPCs ๐Ÿงฎ Excess Delay spread ๐Ÿงฎ Power delay Profile ๐Ÿงฎ RMS Delay Spread ๐Ÿงฎ Simulator for Calculating RMS Delay Spread ๐Ÿงฎ Why is there significant multipath in the case of very high frequencies? ๐Ÿงฎ Why RMS Delay Spread is essential for wireless communication? ๐Ÿงฎ Why the Power Delay Profile is essential? ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together ๐Ÿงฎ MATLAB Code for M-ary QAM ๐Ÿงฎ MATLAB Code for M-ary PSK ๐Ÿ“š Further Reading   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols ...