Skip to main content

MIMO Channel Matrix | Rank and Condition Number


 

The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects.

When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc., (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc.

Multi-antenna communication was introduced to address this issue. It makes diversity approaches possible, greatly increasing the likelihood of the signal being received.

Let me show an example to describe the channel matrix. Assume that the TX and RX communication antennas each have two antenna elements. T1, T2, and R1, R2 are the corresponding TX and RX MIMO antennas.

The complex channel gain between T1 and R1, T1 and R2, T2 and R1, and T2 and R2 is represented by the channel matrix, H.

In a channel matrix, for example, the elements h11 and h21 each represent the complex channel gain between R1 and T1 antennas, R2 and T1 antennas, and so on.


Example of a 4 X 16 Channel Matrix:


The sample shown above is a 4 x 16 channel matrix demonstration. In this illustration, there are 16 TX antennas and 4 Rx antennas. We diagonalize the channel matrix to allow communication between T1 and R1, T2 and R2, and so on, in order to enable practical MIMO antenna communication. Interference is any signal that is received at R1 from T2, T3, and so on, etc. By diagonalizing data, it is possible to minimize signal interference between many simultaneous data streams.


The Importance of Channel State Information (CSI)

For systems to effectively utilize the channel matrix, especially for diagonalization, the transmitter often needs to know the Channel State Information (CSI). CSI refers to the known channel properties of a communication link. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effect of scattering, fading, and power decay with distance. With accurate CSI, sophisticated signal processing techniques can be applied at the transmitter (e.g., precoding) and receiver (e.g., spatial multiplexing or beamforming) to optimize data rates and reliability. Without CSI, or with outdated CSI, the benefits of MIMO systems are significantly reduced, often limiting performance to simple diversity gains rather than the full capacity enhancements possible with spatial multiplexing.


What is rank of a channel matrix?

The rank of the channel matrix is evolving into a crucial wireless communication parameter as we move steadily toward MIMO and higher frequency transmission. The number of the stronger independent data streams that can travel between the TX and RX in MIMO communication is indicated by the rank of the channel matrix.

Implications of Channel Rank:

  • Spatial Multiplexing Capacity: The rank directly determines the maximum number of parallel data streams (or spatial multiplexing gain) that can be supported by the MIMO channel. A higher rank means more independent paths, allowing more data to be transmitted simultaneously, thus increasing data throughput.

  • Impact of Environment: In rich scattering environments (e.g., urban areas with many reflections), the channel matrix tends to have a higher rank, which is beneficial for MIMO performance. In line-of-sight (LOS) scenarios or environments with very few scatterers, the rank can be lower, limiting the spatial multiplexing gain, even with many antennas.

  • Antenna Selection: Understanding the rank helps in optimizing antenna configurations and selecting the most effective transmit and receive antenna pairs to maximize the number of usable data streams.

Procedure of finding rank of channel matrix in MATLAB [click here]

Python code to find rank of a matrix [click here]


What is condition number of a channel matrix:

We can determine the strength of a channel matrix's maximum singular value by comparing it to its lowest singular value using the condition number.

Implications of the Condition Number:

  • Channel Robustness: The condition number is a measure of the "robustness" or "well-behavedness" of the channel. A low condition number (closer to 1) indicates a well-conditioned channel where all independent data streams (eigenmodes) have similar strengths. This means the channel is stable, and small perturbations or noise won't drastically affect the received signal.

  • Sensitivity to Noise and Interference: A high condition number implies an "ill-conditioned" channel. In such a channel, some data streams are significantly weaker than others. Attempting to transmit data over these very weak streams makes the system highly susceptible to noise and interference, potentially leading to significant errors or requiring much higher transmit power for those specific streams. This also impacts the effectiveness of signal detection algorithms at the receiver.

  • Practical System Design: System designers often aim for channels with lower condition numbers to ensure stable and reliable communication. Strategies like antenna placement, adaptive modulation and coding, or even adding artificial scattering (though less common) can indirectly influence the channel's condition number to improve performance.

MATLAB code to find condition number of a channel matrix. [go]




Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR va...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Theoretical BER vs SNR for BPSK

Theoretical Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) for BPSK in AWGN Channel Let’s simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel. Key Points Fig. 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation Transmits one of two signals: +√Eb or −√Eb , where Eb is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel The channel adds Gaussian noise with zero mean and variance N₀/2 (where N₀ is the noise power spectral density). Receiver Decision The receiver decides if the received signal is closer to +√Eb (for bit 0) or −√Eb (for bit 1) . Bit Error Rat...

What is - 3dB Frequency Response? Applications ...

📘 Overview & Theory 📘 Application of -3dB Frequency Response 🧮 MATLAB Codes 🧮 Online Digital Filter Simulator 📚 Further Reading Filters What is -3dB Frequency Response?   Remember, for most passband filters, the magnitude response typically remains close to the peak value within the passband, varying by no more than 3 dB. This is a standard characteristic in filter design. The term '-3dB frequency response' indicates that power has decreased to 50% of its maximum or that signal voltage has reduced to 0.707 of its peak value. Specifically, The -3dB comes from either 10 Log (0.5) {in the case of power} or 20 Log (0.707) {in the case of amplitude} . Viewing the signal in the frequency domain is helpful. In electronic amplifiers, the -3 dB limit is commonly used to define the passband. It shows whether the signal remains approximately flat across the passband. For example, in pulse shapi...