Skip to main content

MATLAB Code for Rank and Condition Number of a Channel Matrix


To assess the signal strengths of various multipaths between TX and RX and enable communication, the rank and condition numbers of a channel matrix are highly helpful characteristics. Signal multipath propagation is a typical occurrence in wireless communication. Phases shift and the signal weakens during this process. We are discussing signal phases in this context. When numerous multipaths arrive at the receiver, the resulting signal may be additive or destructive because of phase alterations. A channel matrix is referred to as a sparse matrix if it only has a few stronger elements and the majority of the other elements are zero.


Finding rank and condition number for sparse matrices is important for numerous reasons. That topic has already been covered in another article [click here]. We will just talk about the corresponding MATLAB codes here.


MATLAB Code for Rank and Condition Number of a Channel Matrix



 In the above code, it processes the rank and condition number for the channel matrix,

H = [0 0 1; 0 1 0; 0 2 0];

Output

Rank of the Channel Matrix = 2

Therefore, only two simultaneous data streams can be operational at once between this 3X3 MIMO systems. For the sake of a short illustration, we also assumed the channel matrix element values.

Before running this code, it is always preferable to generate the channel matrix, which is usually a complex matrix. Then load the "H.mat" file or channel matrix file as shown in the code above.

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

OFDM Symbols and Subcarriers Explained

This article explains how OFDM (Orthogonal Frequency Division Multiplexing) symbols and subcarriers work. It covers modulation, mapping symbols to subcarriers, subcarrier frequency spacing, IFFT synthesis, cyclic prefix, and transmission. Step 1: Modulation First, modulate the input bitstream. For example, with 16-QAM , each group of 4 bits maps to one QAM symbol. Suppose we generate a sequence of QAM symbols: s0, s1, s2, s3, s4, s5, …, s63 Step 2: Mapping Symbols to Subcarriers Assume N sub = 8 subcarriers. Each OFDM symbol in the frequency domain contains 8 QAM symbols (one per subcarrier): Mapping (example) OFDM symbol 1 → s0, s1, s2, s3, s4, s5, s6, s7 OFDM symbol 2 → s8, s9, s10, s11, s12, s13, s14, s15 … OFDM sym...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

Online Channel Impulse Response Simulator

  Fundamental Theory of Channel Impulse Response The fundamental theory behind the channel impulse response in wireless communication often involves complex exponential components such as: \( h(t) = \sum_{i=1}^{L} a_i \cdot \delta(t - \tau_i) \cdot e^{j\theta_i} \) Where: \( a_i \) is the amplitude of the \( i^{th} \) path \( \tau_i \) is the delay of the \( i^{th} \) path \( \theta_i \) is the phase shift (often due to Doppler effect, reflection, etc.) \( e^{j\theta_i} \) introduces a phase rotation (complex exponential) The convolution \( x(t) * h(t) \) gives the received signal So, instead of representing the channel with only real-valued amplitudes, each path can be more accurately modeled using a complex gain : \( h[n] = a_i \cdot e^{j\theta_i} \) 1. Simple Channel Impulse Response Simulator  (Here you can input only a unit impulse signal) Input Signal (Unit Impu...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...