Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Channel Impulse Response (CIR)


Channel Impulse Response (CIR)


 The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.
 

What is the Channel Impulse Response (CIR) ?

It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  at time 0 for the signal. Using a Dirac Delta function, we can approximate this.
 ...(i)
δ(t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of Î´(t) is calculated.

As a result, all frequencies are responded to equally by Î´(t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all frequencies, Î´(t) becomes the perfect option for determining how a system will react.

Channel Impulse Response (CIR) and Multi-path:

If we send a signal in the typical wireless communication medium, that signal will arrive at the receiver as MPCs or multi-paths [Read more]. They arrive at the recipient at different times. They are linear in nature and are delayed variants of the same signal.

The Doppler effect is detected when either the transmitter or receiver or both are moving. The receiving frequency increases as the MS or mobile station approaches the BS or base station. When MS moves away from the receiver, on the other hand, the frequency of receiving decreases.

Channel Impulse Response Equation:

y(t) = x (t ) * h (t) ...(ii)
 
 Where, '*' denotes convolution in time domain

y(t) = Σ x (t - τ) h (t, τ) ...(iii)

A radio channel's time-variant impulse response, where the channel impulse response or channel gain varies with time, is described as h (t). When a signal is sent from the transmitter, it arrives at the receiver with a time delay of x (t -Ï„ ). They are duplicates of the same signal that arrive at the receiver via numerous reflecting or refractive pathways. They're also linear because they're scalar multiples of one another.



The above equation (ii) represents the convolution of the transmitted signal with the channel impulse response. Equation (ii) can be rewritten as y(t) = (h*x)(t), where '*' denotes convolution.
 

How does the channel impulse response affect the signal?

Fig: Original Message Signal



Fig: Channel Impulse Response (due to Multi-path or Rayleigh Fading)




Fig: Received Signal after demodulation at the receiver side, which is affected by both rayleigh fading and AWGN noise


Summary

In a Linear Time-Invariant (LTI) system, the output y(t) is given by the convolution of the input signal x(t) with the system's impulse response h(t):

y(t)=x(t)∗h(t)
 
'*' denotes convolution operation in the time domain

When the input signal is an impulse δ(t), the output of the LTI system is the impulse response h(t). This is because the convolution of an impulse with any function returns that function:

δ(t)∗h(t) = h(t)

However, if the input impulse and the received impulse response are not correlated as expected, several factors could be contributing to this discrepancy

 How to calculate bit error rate (BER) from Channel Impulse  Response

To calculate BER versus SNR from a channel impulse response (CIR), you first need to obtain the CIR, which characterizes the effect of the communication channel. Convert the CIR to the frequency domain using the Fourier Transform to get the Channel Frequency Response (CFR). Then, generate a transmitted signal, convolve it with the CIR, and add white Gaussian noise (AWGN) to simulate the received signal. The Signal-to-Noise Ratio (SNR) is calculated as the ratio of the signal power to the noise power, typically expressed in decibels (dB). Demodulate the received signal and compare it with the original transmitted signal to compute the Bit Error Rate (BER)

Deep Dive:

The channel impulse response is calculated using a simple trick. We begin by sending a pilot signal from the transmitter. The data is then retrieved, and the channel Impulse response is calculated. The pilot signal (or bits) are pre-determined. To receive regular updates on channel Impulse Response, we repeat the method in short intervals. The channel Impulse Response is also affected by the environment, such as indoor, outdoor, industrial, residential, etc.

As previously stated, channel impulse response varies depending on the surroundings. For example, channel impulse responses or generated multi-paths are higher in an indoor environment than in an outdoor environment. On the other hand, while comparing different indoor environments, we find that the industrial indoor environment has a higher number of multipath than any other. Because many reflections and refraction on metallic surfaces of heavy equipment, machinery, and other objects generate MPCs in that environment. Compared to MPCs generated outdoors, MPCs formed indoors are closer in time. MPCs are developed outside because of structures, foliage, and other factors. However, compared to indoors, the distance between the transmitter and receiver is greater. As a result, multipath takes longer to reach the receiver than inside.

We generally see clusters in the channel impulse response at higher frequencies (CIR). When MPCs arrive at the receiver and are near in time, they form a cluster. Similarly, there could be several clusters. Let's say we want to send an impulse signal from the transmitter. The signal then travels 100 multipath to reach the receiver. The first 40 MPCs arrive at the receiver in 50 milliseconds, followed by the next 60 MPCs in a 20-millisecond interval, all arriving within 70 milliseconds. The period of the first cluster is 50 milliseconds, and the time duration of the second cluster is 70 milliseconds. And while the time gap between the two clusters is 20 milliseconds, the total duration of the channel impulse response is (50 + 20 + 70) milliseconds.

Also, Read the following: 
 
 
 
 
 
 

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Rayleigh vs Rician Fading

  In Rayleigh fading, the channel coefficients tend to have a Rayleigh distribution, which is characterized by a random phase and magnitude with an exponential distribution. This means the magnitude of the channel coefficient follows an exponential distribution with a mean of 1. In Rician fading, there is a dominant line-of-sight component in addition to the scattered components. The channel coefficients in Rician fading can indeed tend towards 1, especially when the line-of-sight component is strong. When the line-of-sight component dominates, the Rician fading channel behaves more deterministically, and the channel coefficients may tend towards the value of the line-of-sight component, which could be close to 1.   MATLAB Script clc; clear all; close all; % Define parameters numSamples = 1000; % Number of samples K_factor = 5; % K-factor for Rician fading SNR_dB = 20; % Signal-to-noise ratio (in dB) % Generate complex Gaussian random variable for Rayleigh fading channel h_rayleigh = (

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1]

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK FSK PSK Baud Rate (Hz):

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t

Simulation of ASK, FSK, and PSK using MATLAB Simulink

ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying both modulated and unmodulated signals at the same time. The result section shows that binary '1' is modulated by a certain sine wave amplitude of 1 Volt, and binary '0' is modulated by zero amplitude. Simulation of Frequency Shift Keying (FSK) using MATLAB Simulink   Result The diagram above shows t

How to use MATLAB Simulink

  MATLAB Simulink is a popular add-on of MATLAB. Here, you can use different blocks like modulator, demodulator, AWGN channel, etc. And you can do experiments on your own.       Steps Go to the 'Simulink' tab at the top navbar of MATLAB. If not found, click on the add-on tab, search 'Simulink,' and then click on it to add. Once you installed the simulation, click the 'new' tap at the top left corner. Then, search the required blocks in the 'Simulink library.' Then, drag it to the editor space. You can double-click on the blocks to see the input parameters Then, connect the blocks by dragging a line from one block's output terminal to another block's input. If the connection is complete, click the 'run' tab in the middle of the top navbar.   After clicking on the run button, your Simulink is ready. Then double-click on any block to see the output   The following block diagram is an example of the MATLAB simulation of 'QPSK'
document.onmouseup=new Function ("return false"); }