Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Equalizer to reduce Multi-path Effects using MATLAB

 

Steps

1. Convert Bit Stream to Bipolar Format. Converts the bit stream from binary (0, 1) to bipolar format (-1, 1).

2. Define Channel Impulse Response

3. Pass Signal Through the Channel. Convolves the bipolar signal with the channel impulse response to simulate the channel effect.

4. Adds Gaussian noise to the received signal based on the specified SNR.

5. Initialize Adaptive Filter Parameters. 

  • w: Initializes the adaptive filter coefficients.
  • x_buf: Initializes the buffer for the input to the adaptive filter.
  • equalized_signal: Initializes the array to store the equalized signal.
  • P: Initializes the inverse correlation matrix.
  • 6. Adaptive Equalization Using RLS Algorithm

    Loops through each sample to perform adaptive equalization:

    • Update Input Buffer: Adds the current sample to the input buffer.
    • Calculate Gain Vector: Computes the gain vector k for the adaptive filter.
    • Calculate Error Signal: Computes the error between the original signal and the filter output.
    • Update Filter Coefficients: Updates the adaptive filter coefficients based on the error signal.
    • Update Inverse Correlation Matrix: Updates the inverse correlation matrix for the RLS algorithm.
    • Store Equalized Output: Stores the equalized signal in the output array.

    7. Plot Original and Equalized Signals 

     

    MATLAB Script

    clc;
    clear;
    close all;

    % Parameters
    bit_stream = [1, 1, 0, 0, 1, 0, 1, 1, 1, 0]; % Original bit stream
    N = length(bit_stream); % Number of samples
    filter_order = 10; % Order of the adaptive filter
    lambda = 0.99; % Forgetting factor for RLS algorithm
    delta = 1; % Initial value for the inverse correlation matrix
    SNR = 15; % SNR value in dB

    % Convert bit stream to bipolar format (-1, 1)
    original_signal = bit_stream * 2 - 1;

    % Channel impulse response
    h = [0.75, 0.05, 0.02];

    % Pass the signal through the channel
    received_signal = filter(h, 1, original_signal);

    % Add some noise
    received_signal_noisy = awgn(received_signal, SNR, 'measured');

    % Initialize the adaptive filter coefficients
    w = zeros(filter_order, 1);

    % Initialize buffer for the input to the adaptive filter
    x_buf = zeros(filter_order, 1);

    % Initialize output
    equalized_signal = zeros(N, 1);

    % Initialize the inverse correlation matrix
    P = delta * eye(filter_order);

    % Adaptive equalization using RLS
    for n = 1:N
        % Update the input buffer
        x_buf = [received_signal_noisy(n); x_buf(1:end-1)];

        % Calculate the gain vector
        k = (P * x_buf) / (lambda + x_buf' * P * x_buf);

        % Calculate the error signal
        e = original_signal(n) - w' * x_buf;

        % Update the filter coefficients
        w = w + k * e;

        % Update the inverse correlation matrix
        P = (P - k * x_buf' * P) / lambda;

        % Store the equalized output
        equalized_signal(n) = w' * x_buf;
    end

    % Plot original and equalized signals
    figure;
    subplot(2, 1, 1);
    stem(original_signal, 'filled');
    title('Original Signal');
    xlabel('Sample Index');
    ylabel('Amplitude');
    grid on;

    subplot(2, 1, 2);
    stem(equalized_signal, 'filled');
    title('Equalized Signal');
    xlabel('Sample Index');
    ylabel('Amplitude');
    grid on;
     

    Output


     

    Copy the MATLAB Code from here

    People are good at skipping over material they already know!

    View Related Topics to







    Admin & Author: Salim

    profile

      Website: www.salimwireless.com
      Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
      Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
      Possess M.Tech in Electronic Communication Systems.


    Contact Us

    Name

    Email *

    Message *

    Popular Posts

    Fading : Slow & Fast and Large & Small Scale Fading

    LARGE SCALE FADING The term 'Large scale fading' is used to describe variations in received signal power over a long distance, usually just considering shadowing.  Assume that a transmitter (say, a cell tower) and a receiver  (say, your smartphone) are in constant communication. Take into account the fact that you are in a moving vehicle. An obstacle, such as a tall building, comes between your cell tower and your vehicle's line of sight (LOS) path. Then you'll notice a decline in the power of your received signal on the spectrogram. Large-scale fading is the term for this type of phenomenon. SMALL SCALE FADING  Small scale fading is a term that describes rapid fluctuations in the received signal power on a small time scale. This includes multipath propagation effects as well as movement-induced Doppler frequency shifts. The statistics of small scale fading in industrial contexts can be described as Rician fading, and the Rician K-factor values for various factory condi...

    BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

    Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

    What is the Step Size in FFT?

      In FFT (Fast Fourier Transform), the step size refers to the spacing between consecutive points in the output data after performing the transform. It's often determined by the sampling rate of the signal. The step size is crucial for accurate frequency representation, and smaller step sizes provide finer frequency resolution in the resulting frequency domain representation.   Step Size of a Signal in the Time Domain Suppose you have a signal sampled at 1000 Hz (sampling rate) for a duration of 1 second. The step size, or the time difference between consecutive samples, is then given by the inverse of the sampling rate: Step size = 1/ Sampling rate = 1/ 1000   Hz = 0.001   seconds If you perform an FFT on this signal, the resulting frequency resolution in the frequency domain will be determined in part by this step size. Smaller step sizes provide a finer frequency resolution.   Step Size of a Signal in the Frequency / FFT Domain  ...

    Comparisons among ASK, PSK, and FSK | And the definitions of each

    Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

    MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

    Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

    Constellation Diagrams of ASK, PSK, and FSK

    Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

    Difference between AWGN and Rayleigh Fading

    Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

    RMS Delay Spread, Excess Delay Spread and Multi-path ...

    Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direct communication link between TX and RX. The other communication pathways are called non-line of sight (NLOS) paths. Reflection and refraction of transmitted signals with building walls, foliage, and other objects create NLOS paths. [ Read More about LOS and NLOS Paths] Multipath Components or MPCs: The linear nature of the multipath component signals is evident. This signifies that one multipath component signal is a scalar multiple of ...