Skip to main content

What is +/- 3dB Frequency Response? Applications ...



 

Remember, for most passband filters, the magnitude response typically varies by up to 3 dB within the passband. This is a common characteristic and is considered an industry standard.

The term '-3dB frequency response' is used frequently to indicate that power has decreased to 50% of its maximum or original amount. However, it also states that the signal voltages have reduced to 0.707 of their highest value. So,

The -3dB comes from either 10 Log (0.5) {in the case of signal's power}

or 20 Log (0.707) {{in the case of signal's amplitude}

Viewing the signal in the frequency domain is quite helpful. In electronic amplifiers, the +/-3dB limit is commonly utilized. It makes it clear whether or not the signal is a flat pass-band. You can observe that the signal in the case of pulse shaping is nearly flat along +/-3dB bandwidth.

The phrase "+/-3 dB" originally meant flatness in the above figure, not high- and low-frequency extension. For instance, one could state that "between 100 Hz and 18 kHz, the signal is flat, within +/-3 dB." Accordingly, a device's frequency response graph (i.e., for speakers) would not depart from a straight line between two frequencies by more than 3 dB in either direction.

Ad ---------------------------------------------------------------------

. - - -  - - - - - - - - . Filters

---------------------------------------------------------------------

Particularly in communication applications, continuous gain over a wider bandwidth is necessary. The difference in frequencies between +/-3 dB values is what constitutes the bandpass filter's bandwidth. Growth reasonably stays consistent in this area. Beyond the 3dB barrier, attenuation is significant, increasing the likelihood of information loss. Therefore, when the voltage is reduced from maximum to 0.707Max, or the power is reduced from maximum to half power, the signal's bandwidth is determined.

In signal processing, maintaining the integrity of the signal within the passband is critical. A signal that drops to less than 50% of its original (maximum) power—equivalent to a 3 dB reduction—is generally considered unacceptable. This threshold is based on the standard that the passband of a filter should preserve most of the signal's energy. If the signal power falls below this level within the passband after filtering, it indicates excessive attenuation, which can lead to significant distortion or loss of important information. Such behavior is typically unacceptable in many practical applications, especially in audio signal processing, where fidelity and clarity are essential. Therefore, a well-designed filter ensures that the variation in magnitude response within the passband remains within a 3 dB tolerance to maintain signal quality.


Application of -3dB Frequency Response

All sorts of filters frequently employ the -3dB point (low pass, band pass, high pass...). It only states that the filter only allows half of the power at that frequency to pass.

In the case of digital filter designing, we often use a bandpass filter to pass frequency components that fall in a particular range (e.g., frequencies that fall between h1 to h2 Hz). Here, the bandpass filter will allow the passing of the frequencies, which range from h1 to h2 Hz; other frequencies will be discarded. The signal is called a flat passband if the magnitude in this frequency range doesn't vary much. In most cases, for filters, it varies between +/- 3db in magnitude. 


Why Signal Amplitude Reduces After Bandpass Filtering

In real-world filters, the amplitude of a signal is often scaled due to unity energy normalization, which is applied to preserve the total signal power. This normalization ensures that the filtered signal maintains the same power as the original but results in a reduction in amplitude.

1. Signal Power Before Filtering

For a sinusoidal signal:

x(t) = A cos(2ฯ€fct)

The power P_x of the signal is given by:

Px = (1/T) ∫ |x(t)|² dt = A²/2

2. Bandpass Filter and Unity Energy Normalization

A bandpass filter with a constant gain H(f) over the passband ensures power normalization by scaling the gain such that:

f₁f₂ |H(f)|² df = 1

For a filter with bandwidth B = f₂ - f₁, the gain is:

|H(f)|² = 1/B

The filter scales the signal by 1/√B to normalize the power.

3. Effect on Signal Amplitude

After filtering, the power of the filtered signal is the same as the original, but the amplitude is reduced. For sinusoidal signals:

Py = Px = A²/2

The amplitude of the filtered signal Ay is scaled as:

Ay = A × √(1/B)

4. Example: Amplitude Halving

Consider a sinusoidal signal:

x(t) = cos(2ฯ€ × 1000t)

If the filter has a bandwidth B = 2, the amplitude of the filtered signal becomes:

Ay = A × 1/√2 ≈ 0.707A

Thus, the amplitude is reduced by approximately 29.3%.

If filter bandwidth B = 4, then the amplitude of the filtered signal reduces to 50%, and so on.


5. Why This Happens

Real-world filters are designed to prioritize power preservation rather than amplitude. This normalization ensures the filter does not artificially boost or reduce the signal's power. 

 

Read also about 

  1. MATLAB Code for understanding +/- 3 dB Frequency Response of a Bandpass Filter
  2. Filters
  3. Online Digital Filter Simulator


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Constellation Diagrams of M-ary QAM | M-ary Modulation

๐Ÿ“˜ Overview of QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Online Simulator for M-ary QAM Constellations ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of QAM configurations ... ๐Ÿงฎ MATLAB Code for 4-QAM ๐Ÿงฎ MATLAB Code for 16-QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM ๐Ÿงฎ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diff...

Hybrid Beamforming | Page 2

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | clear all; close all; clc; Nt = 64; Nr = 16; NtRF = 4; NrRF = 4; At both the transmitter and receiver ends, there are four RF chains only for a hybrid beamforming system. Alternatively, every 16 antenna elements on the transmitter side is connected to a single RF chain, while every 4 antenna elements on the receiver side are connected to a single RF chain. Mixers, amplifiers, and other critical wireless communication components make up the RF chain. Now, in the case of hybrid beamforming, there can be four different data streams between the transmitter and receiver, as both sides have four RF chains, each of which is accountable for a separate data stream. For Analog Beamforming: All 64 Tx antenna elements create a beam or focus the resultant correlated signal spread from adjacent antennas to a particular direction. Similarly, it may be used for beam...

Constellation Diagram of FSK in Detail

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagram of FSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Code ๐Ÿ“š Further Reading   Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK) . Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel. Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'. Simulator for 2-FSK Constellation Diagram Simulator for 2-FSK Constellation Diagram SNR (dB): ...

Theoretical BER vs SNR for binary ASK and FSK

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Theoretical Ber vs SNR for Amplitude Shift Keying (ASK) The theoretical bit error rate (BER) for binary Amplitude Shift Keying (ASK) as a function of the signal-to-noise ratio (SNR) can be derived using the following expression: If we map the binary signals to 1 and -1 in ASK , the probability of bit error will be: BER = Q(√(2*SNR))   If we map the binary signals to 0 and 1 in ASK , the probability of bit error will be:    BER = Q(√(SNR/2))   Where: Q(x) is the Q-function, which is the tail probability of the standard normal distribution. SNR is the signal-to-noise ratio. N0 is the noise power spectral density. Where Q is the Q function In mathematics Q(x) = 0.5 * erfc(x/ √ 2)   Calculate the Probability of Error using Q-function for ASK: For ASK with amplitudes 0 and 1 : When bit '0' is transmitted, the received signal is noise only . When bit '1' is transmitted, the re...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Comparisons among ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for calculating Bandwidth of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on Comparisons among ASK, PSK, and FSK ... ๐Ÿงฎ Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

How Windowing Affects Your Periodogram

The windowed periodogram is a widely used technique for estimating the Power Spectral Density (PSD) of a signal. It enhances the classical periodogram by mitigating spectral leakage through the application of a windowing function. This technique is essential in signal processing for accurate frequency-domain analysis.   Power Spectral Density (PSD) The PSD characterizes how the power of a signal is distributed across different frequency components. For a discrete-time signal, the PSD is defined as the Fourier Transform of the signal’s autocorrelation function: S x (f) = FT{R x (ฯ„)} Here, R x (ฯ„)}is the autocorrelation function. FT : Fourier Transform   Classical Periodogram The periodogram is a non-parametric PSD estimation method based on the Discrete Fourier Transform (DFT): P x (f) = \(\frac{1}{N}\) X(f) 2 Here: X(f): DFT of the signal x(n) N: Signal length However, the classical periodogram suffers from spectral leakage due to abrupt truncation of the ...