Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

What is +/- 3dB Frequency Response? Applications ...


 

Remember, for most of the pass-band filters, the magnitude of the desired frequency range varies by 3dB. It is common for most of the pass-band filters.

The term '3dB frequency response' is used frequently to indicate that power has decreased to 50% of its maximum or original amount. However, it also states that the signal voltages have reduced to 0.707 of their highest value. So,

The -3dB comes from either 20 Log (0.707) or 10 Log (0.5).

Viewing the signal in the frequency domain is quite helpful. In electronic amplifiers, the +/-3dB limit is commonly utilized. It makes it clear whether or not the signal is a flat pass-band. You can observe that the signal in the case of pulse shaping is nearly flat along +/-3dB bandwidth.

The phrase "+/-3 dB" originally meant flatness in the above figure, not high- and low-frequency extension. For instance, one could state that "between 100 Hz and 18 kHz, the signal is flat, within +/-3 dB." Accordingly, a device's frequency response graph (i.e., for speakers) would not depart from a straight line between two frequencies by more than 3 dB in either direction.

Ad ---------------------------------------------------------------------

. - - -  - - - - - - - - . Filters

---------------------------------------------------------------------

Particularly in communication applications, continuous gain over a wider bandwidth is necessary. The difference in frequencies between +/-3 dB values is what constitutes the bandpass filter's bandwidth. Growth reasonably stays consistent in this area. Beyond the 3dB barrier, attenuation is significant, increasing the likelihood of information loss. Therefore, when the voltage is reduced from maximum to 0.707Max, or the power is reduced from maximum to half power, the signal's bandwidth is determined.

A less powerful signal than 50% of its original (maximum) power could be more helpful. 10log((P/2)/P) = 10log(0.5) = -3 dB is what we get when we take dB. As a result, at -3dB on the dB scale, half power is reached. Why does 3dB? Has to do with intolerance for a 50% fall in signal strength. It would have been -1.25dB if it had been 25%.

Application of -3dB Frequency Response

All sorts of filters frequently employ the -3dB point (low pass, band pass, high pass...). It only states that the filter only allows half of the power at that frequency to pass.


Q.1. The frequency at which the response is _-3db?

A. In the case of digital filter designing, we often use a bandpass filter to pass frequency components that fall in a particular range (e.g., frequencies that fall between h1 to h2 Hz). Here, the bandpass filter will allow the passing of the frequencies, which range from h1 to h2 Hz; other frequencies will be discarded. The signal is called a flat passband if the magnitude in this frequency range doesn't vary much. In most cases, for filters, it varies between +/- 3db in magnitude. 


Why Signal Amplitude Reduces After Bandpass Filtering

In real-world filters, the amplitude of a signal is often scaled due to unity energy normalization, which is applied to preserve the total signal power. This normalization ensures that the filtered signal maintains the same power as the original but results in a reduction in amplitude.

1. Signal Power Before Filtering

For a sinusoidal signal:

x(t) = A cos(2Ï€fct)

The power P_x of the signal is given by:

Px = (1/T) ∫ |x(t)|² dt = A²/2

2. Bandpass Filter and Unity Energy Normalization

A bandpass filter with a constant gain H(f) over the passband ensures power normalization by scaling the gain such that:

f₁f₂ |H(f)|² df = 1

For a filter with bandwidth B = f₂ - f₁, the gain is:

|H(f)|² = 1/B

The filter scales the signal by 1/√B to normalize the power.

3. Effect on Signal Amplitude

After filtering, the power of the filtered signal is the same as the original, but the amplitude is reduced. For sinusoidal signals:

Py = Px = A²/2

The amplitude of the filtered signal Ay is scaled as:

Ay = A × √(1/B)

4. Example: Amplitude Halving

Consider a sinusoidal signal:

x(t) = cos(2Ï€ × 1000t)

If the filter has a bandwidth B = 2, the amplitude of the filtered signal becomes:

Ay = A × 1/√2 ≈ 0.707A

Thus, the amplitude is reduced by approximately 29.3%.

If filter bandwidth B = 4, then the amplitude of the filtered signal reduces to 50%, and so on.


5. Why This Happens

Real-world filters are designed to prioritize power preservation rather than amplitude. This normalization ensures the filter does not artificially boost or reduce the signal's power. 

 

Read also about 

[1] MATLAB Code for understanding +/- 3 dB Frequency Response of a Bandpass Filter

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Fading : Slow & Fast and Large & Small Scale Fading

LARGE SCALE FADING The term 'Large scale fading' is used to describe variations in received signal power over a long distance, usually just considering shadowing.  Assume that a transmitter (say, a cell tower) and a receiver  (say, your smartphone) are in constant communication. Take into account the fact that you are in a moving vehicle. An obstacle, such as a tall building, comes between your cell tower and your vehicle's line of sight (LOS) path. Then you'll notice a decline in the power of your received signal on the spectrogram. Large-scale fading is the term for this type of phenomenon. SMALL SCALE FADING  Small scale fading is a term that describes rapid fluctuations in the received signal power on a small time scale. This includes multipath propagation effects as well as movement-induced Doppler frequency shifts. The statistics of small scale fading in industrial contexts can be described as Rician fading, and the Rician K-factor values for various factory condi...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

What is the Step Size in FFT?

  In FFT (Fast Fourier Transform), the step size refers to the spacing between consecutive points in the output data after performing the transform. It's often determined by the sampling rate of the signal. The step size is crucial for accurate frequency representation, and smaller step sizes provide finer frequency resolution in the resulting frequency domain representation.   Step Size of a Signal in the Time Domain Suppose you have a signal sampled at 1000 Hz (sampling rate) for a duration of 1 second. The step size, or the time difference between consecutive samples, is then given by the inverse of the sampling rate: Step size = 1/ Sampling rate = 1/ 1000   Hz = 0.001   seconds If you perform an FFT on this signal, the resulting frequency resolution in the frequency domain will be determined in part by this step size. Smaller step sizes provide a finer frequency resolution.   Step Size of a Signal in the Frequency / FFT Domain  ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direct communication link between TX and RX. The other communication pathways are called non-line of sight (NLOS) paths. Reflection and refraction of transmitted signals with building walls, foliage, and other objects create NLOS paths. [ Read More about LOS and NLOS Paths] Multipath Components or MPCs: The linear nature of the multipath component signals is evident. This signifies that one multipath component signal is a scalar multiple of ...