Skip to main content

What is +/- 3dB Frequency Response? Applications ...



 

Remember, for most passband filters, the magnitude response typically varies by up to 3 dB within the passband. This is a common characteristic and is considered an industry standard.

The term '-3dB frequency response' is used frequently to indicate that power has decreased to 50% of its maximum or original amount. However, it also states that the signal voltages have reduced to 0.707 of their highest value. So,

The -3dB comes from either 10 Log (0.5) {in the case of signal's power}

or 20 Log (0.707) {{in the case of signal's amplitude}

Viewing the signal in the frequency domain is quite helpful. In electronic amplifiers, the +/-3dB limit is commonly utilized. It makes it clear whether or not the signal is a flat pass-band. You can observe that the signal in the case of pulse shaping is nearly flat along +/-3dB bandwidth.

The phrase "+/-3 dB" originally meant flatness in the above figure, not high- and low-frequency extension. For instance, one could state that "between 100 Hz and 18 kHz, the signal is flat, within +/-3 dB." Accordingly, a device's frequency response graph (i.e., for speakers) would not depart from a straight line between two frequencies by more than 3 dB in either direction.

Ad ---------------------------------------------------------------------

. - - -  - - - - - - - - . Filters

---------------------------------------------------------------------

Particularly in communication applications, continuous gain over a wider bandwidth is necessary. The difference in frequencies between +/-3 dB values is what constitutes the bandpass filter's bandwidth. Growth reasonably stays consistent in this area. Beyond the 3dB barrier, attenuation is significant, increasing the likelihood of information loss. Therefore, when the voltage is reduced from maximum to 0.707Max, or the power is reduced from maximum to half power, the signal's bandwidth is determined.

In signal processing, maintaining the integrity of the signal within the passband is critical. A signal that drops to less than 50% of its original (maximum) power—equivalent to a 3 dB reduction—is generally considered unacceptable. This threshold is based on the standard that the passband of a filter should preserve most of the signal's energy. If the signal power falls below this level within the passband after filtering, it indicates excessive attenuation, which can lead to significant distortion or loss of important information. Such behavior is typically unacceptable in many practical applications, especially in audio signal processing, where fidelity and clarity are essential. Therefore, a well-designed filter ensures that the variation in magnitude response within the passband remains within a 3 dB tolerance to maintain signal quality.


Application of -3dB Frequency Response

All sorts of filters frequently employ the -3dB point (low pass, band pass, high pass...). It only states that the filter only allows half of the power at that frequency to pass.

In the case of digital filter designing, we often use a bandpass filter to pass frequency components that fall in a particular range (e.g., frequencies that fall between h1 to h2 Hz). Here, the bandpass filter will allow the passing of the frequencies, which range from h1 to h2 Hz; other frequencies will be discarded. The signal is called a flat passband if the magnitude in this frequency range doesn't vary much. In most cases, for filters, it varies between +/- 3db in magnitude. 


Why Signal Amplitude Reduces After Bandpass Filtering

In real-world filters, the amplitude of a signal is often scaled due to unity energy normalization, which is applied to preserve the total signal power. This normalization ensures that the filtered signal maintains the same power as the original but results in a reduction in amplitude.

1. Signal Power Before Filtering

For a sinusoidal signal:

x(t) = A cos(2ฯ€fct)

The power P_x of the signal is given by:

Px = (1/T) ∫ |x(t)|² dt = A²/2

2. Bandpass Filter and Unity Energy Normalization

A bandpass filter with a constant gain H(f) over the passband ensures power normalization by scaling the gain such that:

f₁f₂ |H(f)|² df = 1

For a filter with bandwidth B = f₂ - f₁, the gain is:

|H(f)|² = 1/B

The filter scales the signal by 1/√B to normalize the power.

3. Effect on Signal Amplitude

After filtering, the power of the filtered signal is the same as the original, but the amplitude is reduced. For sinusoidal signals:

Py = Px = A²/2

The amplitude of the filtered signal Ay is scaled as:

Ay = A × √(1/B)

4. Example: Amplitude Halving

Consider a sinusoidal signal:

x(t) = cos(2ฯ€ × 1000t)

If the filter has a bandwidth B = 2, the amplitude of the filtered signal becomes:

Ay = A × 1/√2 ≈ 0.707A

Thus, the amplitude is reduced by approximately 29.3%.

If filter bandwidth B = 4, then the amplitude of the filtered signal reduces to 50%, and so on.


5. Why This Happens

Real-world filters are designed to prioritize power preservation rather than amplitude. This normalization ensures the filter does not artificially boost or reduce the signal's power. 

 

Read also about 

  1. MATLAB Code for understanding +/- 3 dB Frequency Response of a Bandpass Filter
  2. Filters
  3. Online Digital Filter Simulator


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Gaussian minimum shift keying (GMSK)

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ Simulator for GMSK ๐Ÿงฎ MSK and GMSK: Understanding the Relationship ๐Ÿงฎ MATLAB Code for GMSK ๐Ÿ“š Simulation Results for GMSK ๐Ÿ“š Q & A and Summary ๐Ÿ“š Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: ฮธ(t) = ∫ 0 t m filtered (ฯ„) dฯ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

Difference between AWGN and Rayleigh Fading

๐Ÿ“˜ Introduction, AWGN, and Rayleigh Fading ๐Ÿงฎ Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...

Calculation of SNR from FFT bins in MATLAB

๐Ÿ“˜ Overview ๐Ÿงฎ MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal ๐Ÿงฎ MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data ๐Ÿ“š Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (ฮฒ) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

๐Ÿ“˜ Overview ๐Ÿงฎ How to use MATLAB Simulink ๐Ÿงฎ Simulation of ASK using MATLAB Simulink ๐Ÿงฎ Simulation of FSK using MATLAB Simulink ๐Ÿงฎ Simulation of PSK using MATLAB Simulink ๐Ÿงฎ Simulator for ASK, FSK, and PSK ๐Ÿงฎ Digital Signal Processing Simulator ๐Ÿ“š Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for calculating BER ๐Ÿงฎ MATLAB Codes for calculating theoretical BER ๐Ÿงฎ MATLAB Codes for calculating simulated BER ๐Ÿ“š Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Constellation Diagrams of M-ary QAM | M-ary Modulation

๐Ÿ“˜ Overview of QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Online Simulator for M-ary QAM Constellations ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of QAM configurations ... ๐Ÿงฎ MATLAB Code for 4-QAM ๐Ÿงฎ MATLAB Code for 16-QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM ๐Ÿงฎ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diffe...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

๐Ÿ“˜ Overview of QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of QAM configurations ... ๐Ÿงฎ MATLAB Code for 4-QAM ๐Ÿงฎ MATLAB Code for 16-QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM ๐Ÿงฎ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the vari...