Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Filters Computer Networks

OFDM for 4G & 5G

 

Orthogonal Frequency Division Multiplexing

When a signal with high bandwidth traverses through a medium, it tends to disperse more compared to a signal with lower bandwidth.

A high-bandwidth signal comprises a wide range of frequency components. Each frequency component may interact differently with the transmission medium due to factors such as attenuation, dispersion, and distortion. OFDM combats the high-bandwidth frequency selective channel by dividing the original signal into multiple orthogonal multiplexed narrowband signals. In this way it, overcomes the inter-symbol interferences (ISI) issue.

Block Diagram

 



‘k’ indicates kth position in a input symbol

N is the number of subcarriers 

Orthogonal frequency division multiplexing (OFDM) is an acronym for orthogonal frequency division multiplexing. It is a scheme of multicarrier modulation. It's utilized to make greater use of the spectrum. Multiple carriers are used to modulate the message signal in this case. According to Nyquist's law, if the highest operational frequency is fmax, we must sample the signal at a rate of at least 2*fmax in order for the signal to be retrieved at the receiver properly. The signal's bandwidth B, on the other hand, will be 2*fmax.


Multi-path components, or MPCs, are seen while transmitting a signal in a wireless environment. MPCs are numerous copies of the same transmitted signal that arrive at the receiver with time delay or dispersion. If we send the second symbol immediately after the first, the second symbol will interact with the first symbol's time delayed MPCs. Excess delay spread refers to the time gap between the first and last MPCs. However, for measuring the time dispersion of multi path components, or MPCs, RMS delay spread is the most appropriate word. However, the RMS delay spread and the excess delay spread are not the same. The RMS delay spread is the power delay spread's second central momentum. In a wireless context, you've probably noticed signal power delay spread owing to multi-path. The relevant power weightage associated with MPCs is also taken into consideration by RMS delay spread.


Assume that the total bandwidth available is B. The duration of the symbol will then be 1/B. Signals at higher frequencies are subjected to additional reflection and refraction. As a result, more multipath is created, and the signal reaches the receiver via several reflections and refractions. RMS delay spread (say, Td) is substantially more than symbol time length (say, Ts) or Td>>Ts in such circumstances (for very high frequency). When the RMS delay spread is greater than the symbol time length, the symbol interacts with the MPCs of other symbols. This is what we term it technically. Inter-symbol interferences, or ISI, is a better word for this.


We divide the entire available bandwidth B into N number of sub-bands to eliminate inter-symbol interference. The bandwidth of each sub-band will be B/N. The symbol duration, Ts, will be 1/(B/N) if we do this. The symbol duration, Ts, 1/(B/N), will be significantly larger than 1/B, according to the calculations. N = 256, 512, and so on are common values. In the OFDM approach, we employ N point FFT for multi carrier modulation, or MCM.


Let me explain using a mathematical example: the RMS delay spread for an outdoor communication channel is typically 2 to 3 microseconds. If we use single carrier transmission with a transmission bandwidth of 10 MHz, the symbol time duration is Ts = 1/B or 0.1 microsecondTd (=2 to 3 microsecond) is greater than Ts (=0.1 microsecond). Inter-symbol interference, or ISI, is the result of this.


If we divide the broadband bandwidth, B, into N sub-bands, the bandwidth of each sub-band becomes B/N, increasing the symbol time duration, Ts. We normally keep symbol duration periods 10 times longer than RMS delay spread for seamless communication. This rule is also known as the sigma rule of communication.


Diagram:


Fig: Conventional Single carrier transmission



In the diagram above, a traditional single carrier communication system is depicted. B is the total bandwidth. If B = 10 MHz, Ts = 1/(10 MHz) = 0.1 microsecond symbol duration or symbol time. RMS delay spread, Td = 2 - 3 microsecond. As a result, the RMS delay spread is greater than the symbol time. As a result, the desired signal is not recoverable. So, in the next diagram, we're attempting to demonstrate that the entire bandwidth B is divided into N (say, 1000) portions.





Fig: Multicarrier transmission in OFDM



Each sub band's bandwidth is now B/N. Multicarrier modulation is used to modulate the sub band message signal. If N = 1000, then each sub band has a bandwidth of (100 MHz)/1000 = 10 KHz. Each sub band's symbol time, Ts, is now equal to 1/(10KHz) = 100 microsecond. The symbol time is significantly higher than the critical RMS delay spread in this case. Theoretically, That is enough to remove ISI.

[Get MATLAB Code for OFDM]

 Filter Bank Multi-Carrier (FBMC)


'Filter Bank Multi-Carrier' is the abbreviation for 'Filter Bank Multi-Carrier.' To obtain the desired data in an OFDM system, we use inverse fast Fourier transform (IFFT) at the transmitter side, or we use the opposite method or fast Fourier transform at the receiver side. For OFDM, we use the term Tsym, which stands for symbol duration time. As we all know, it's a multicarrier modulation system in which we send a single high data rate signal instead of multiple low data rate signals in parallel. To cancel inter-symbol interference (ISI) in a communication system caused by fading, we divide the entire bandwidth B into N sub bands.

The subcarrier filters of the IFFT/FFT filter banks in OFDM have poor containment, which is one of the main drawbacks of the system. As a result, there is a lot of noise from other users' transmissions.

On the other hand, when transmitting a symbol, we must not only use the Tsym time period, but also add a cyclic prefix. As a result, this phenomenon has an impact on bandwidth efficiency.

Another explanation is that when we send a signal over a multicarrier system, the carrier signal behaves like a sinc wave. As a result, every subcarrier can interfere with the subcarriers before and after it.

In this case, FBMC resolves the concerns with the OFDM system. To differentiate the sub carriers, we utilise a digital filter. We also don't require the cyclic prefix in this case. Digital filters are sharp in nature, reducing interference between other subcarriers significantly.



# OFDM delay spread channel to parallel fading channel conversion



People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK ASK or OFF ON Keying Ask is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  then it transmits no power. But the receiver is intelligent enough to deflect whether you've sent binary bit  "1"  or  "0

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2018] UGC Net Electronic Science Questions With Answer Key Download Pdf [July 2018] UG

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal to Noise Ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power is twice as

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between two signals or symbols. Figure 1: Constellation diagrams of ASK, PSK, and FSK The constellation points for ASK, PSK, and FSK [↗] are located in a different pattern, and the distances between the constellation points vary. According to the above diagram, the distance between ASK constellation points is (√Eb -0) = √Eb (where Eb stands for energy per bit). From the above figure, you can also see the distances between constellation points for PSK and FSK are 2√Eb and √(2Eb), respectively. In a constellation diagram, if the distance between signaling points is less, then the probability

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear all; close all; EbN0=-4:1:24; % Signal to Noise Ratio per Bit (in dB) EbN0ratio=10.^(EbN0/10); % Converted into ratio colors={'k-*','r-h','g-o','c-s','m-s','y-*','k-p','b:s','m:d','g:p'}; index=1; %BPSK BPSK_BER = 0.5*erfc(sqrt(EbN0ratio)); plotHandle=plot(EbN0,log10(BPSK_BER),char(colors(index))); set(plotHandle,'LineWidth',1.7); hold on; index=index+1; %M-PSK m=2:1:5; M=2.^m; for i=M, k=log2(i); PSK_BER = 1/k*erfc(sqrt(EbN0ratio*k)*sin(pi/i)); plotHandle=plot

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;