Skip to main content

Doppler Delay

 

Doppler Shift Formula

When either the transmitter or the receiver is in motion, or when both are in motion, Doppler Shift is an essential parameter in wireless Communication. We notice variations in reception frequencies in vehicles, trains, or other similar environments. In plain language, the received signal frequency increases as the receiver moves toward the transmitter and drops as the receiver moves in the opposite direction of the transmitter. This phenomenon is called the Doppler shift or Doppler spread.


Doppler Shift Formula:

By equation,                fR = fT (+/-) fD

                                     fR= receiving frequency
                                     fT= transmitted frequency
                                     fD= Doppler frequency
We frequently see an increase or decrease in reception frequencies due to the equation. Now, the Doppler frequency is bounded by several rules, 


Doppler shift of LOS path: ν1 = fc*v/c, 

Doppler shift of reflected path: ν2fc*v/c*cos(theta)

where, c = speed of light
v = speed of the vehicle

Doppler spread: ν2 − ν1

Or, Doppler spread, fD = |v/lambda * {cos(theta) - 1}|, 

** '|' indicates mod

where, v = velocity of vehicle

            lambda = wavelength = c/frequency

For example, when MS (in motion) reaches towards BS, cos = cos(0 degrees)=1, and when MS goes away from BS or base station, cos = cos(180 degrees)=-1.

As a result of the preceding equation, the receiving frequency increases if the receiver moves towards the receiver.

fT+fD, here frequency increases as fR = fT + fD
                                                      or, fR = fT + v/lambda * 1
                                                       or, fR =fT + v/lambda
                                                Here, lambda = wavelength of operating frequency

Similarly, when the receiver moves away from BS or the cell tower, the frequency decreases by v/lambda* cos ( 180 degrees) or v/lambda * (-1), as cos180 = -1. So, now the received frequency at the receiver side is,

fR = fT - fD 


Doppler Shift vs Doppler Spread

1. Doppler Shift:
The term "Doppler Shift" refers to a wave's shift in frequency as it relates to an observer moving with respect to the wave source.
The amount that the frequency has changed due to relative motion is represented by a single number.
The Doppler shift, for example, is the difference between the transmitted and received frequencies of a radar signal when it reflects off a moving object.

2. Doppler Spread: 
This is the range of frequency shifts (Doppler shifts) that happen in a multipath environment or when a signal is scattered by several moving objects.
The signal's spectral broadening brought on by these numerous Doppler shifts is indicated by Doppler spread.It affects the channel's coherence time and is a measure of the variance or dispersion of the Doppler shifts. High Doppler spread indicates quick changes in the channel's properties, which may have an impact on the efficiency of a communication system.

To sum up, Doppler spread measures the range of frequency shifts brought on by multipath propagation and the relative motion of multiple scatterers, whereas Doppler shift is a single frequency change resulting from relative motion. 
    

MATLAB Code for Doppler Shift vs Doppler Spread

clc;
clear;
close all;

% Constants
c = 3e8; % Speed of light in m/s (for electromagnetic waves)
f0 = 2.4e9; % Original frequency in Hz (e.g., 2.4 GHz for WiFi)

% Relative velocities (in m/s) for different objects
velocities = [-30, -10, 0, 10, 20]; % Example velocities of objects

% Calculate Doppler Shifts
doppler_shifts = (velocities / c) * f0;

% Calculate Doppler Spread
doppler_spread = max(doppler_shifts) - min(doppler_shifts);

% Display results
fprintf('Relative velocities (in m/s) for different vehicles:\n');
disp(velocities);
fprintf('Doppler Shifts (Hz):\n');
disp(doppler_shifts);
fprintf('Doppler Spread (Hz): %f\n', doppler_spread);

Output 

 Relative velocities (in m/s) for different vehicles:
   -30   -10     0    10    20

Doppler Shifts (Hz):
  -240   -80     0    80   160

Doppler Spread (Hz): 400.000000
 

Copy the MATLAB Code from here

 
 

How Doppler Spread Affects Communication

The Doppler spread causes fading in wireless Communication. Fading occurs when the received power fluctuates or decreases at the receiver side for a short or large amount of time. Fast and slow fading in wireless channels is caused by Doppler spread. All of those topics have already been covered in another article. Please read the full article.

For practical communication systems, if the received symbol or signal is R[t,f], then

R[t, f] = S(Ï„)*h(Ï„, f)*exp(2*pi*(t - Ï„))

where S(Ï„) is the transmitted signal with some delay Ï„

h(Ï„, f) is the Doppler delay channel impulse (DD-CIR) response which characterizes how the signal's amplitude and phase change with respect to time delay Ï„ and frequency f

exp(2*pi*(t - Ï„)) represents the phase shift due to the Doppler effect


Also, read about

[1] Fading - Slow & Fast and Large & Small Scale Fading



People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR va...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to address this issue. It makes diversity app...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

UGC-NET Electronic Science Previous Year Question Papers with Answer Keys and Full Explanations

    UGC-NET Electronic Science Question Paper With Answer Key Download Pdf [2023] Download Question Paper               See Answers   2025 | 2024 | 2023 | 2022 | 2021 | 2020 UGC-NET Electronic Science  2023 Answers with Explanations Q.115 (A) It is an AC bridge to measure frequency True. The Wien bridge is an AC bridge used for accurate frequency measurement . (B) It is a DC bridge to measure amplitude False. Wien Bridge works with AC signals , not DC. (C) It is used as frequency determining element True. In Wien bridge oscillators, the RC network sets the oscillation frequency . (D) It is used as band-pass filter Partially misleading. The Wien bridge network acts like a band-pass filter in the oscillator, but the bridge itself is not typically described this way. Exam questions usually mark this as False . (E) It is used as notch filter False. That is the Wien NOTCH bridge ,...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...