Skip to main content

Gaussian random variable and its PDF in MATLAB


Home / Wireless Communication / Gaussian random variable and its PDF



What exactly are Gaussian Random Variable and its probability distribution function (PDF) are


 The practical communication system is modeled as 

y = x + n;

Where y=received  signal 

x= transmitted signal 

n= noise


What is the significance of the Gaussian Random Variable?  

We know, especially for wireless communication, whenever we transmit a signal from transmitter to receiver, there will be some additive white Gaussian noise to the signal when we receive it from the receiver. The additive white Gaussian noise has some properties, like zero mean and a specific standard deviation. We learn later what exactly they mean, what Deviations are, and the relation of the Gaussian random variable with it. Here, the word "random" is used because noise is always unexpected in the communication system. We can't predict it before the transmission of the signal. But we can draw its probability distribution function (PDF) from several experiments or values. 



What exactly is Gaussian Random Variable PDF is

PDF of Gaussian random variable is defined as


Here, σ = Standard Deviation of random variable samples

μ = mean of random variable samples

In the above figure probability distribution function of the Gaussian random variable is shown. Students often need clarification with the title of the x label and y label. x tag defines the variation of the standard deviation value of Gaussian noise collected from large samples or populations or many experiments. After getting the standard Deviation of noise,e we plot the probability of standard deviations derived from large samples. 


MATLAB Code for gaussian random variable and its PDF

clear;

close all;


% Number of samples to generate

n = 100000;


% Generate Gaussian distribution (Standard Normal Distribution)

gaussian_values = randn(1, n);  % Standard normal distribution (mean = 0, std = 1)


% Calculate mean and standard deviation of the Gaussian values

mu = mean(gaussian_values);

sigma = std(gaussian_values);


% Calculate the range for 1, 2, and 3 standard deviations

range_1sigma = sum(gaussian_values >= (mu - sigma) & gaussian_values <= (mu + sigma)) / n * 100;  % Percentage within 1 standard deviation

range_2sigma = sum(gaussian_values >= (mu - 2*sigma) & gaussian_values <= (mu + 2*sigma)) / n * 100;  % Percentage within 2 standard deviations

range_3sigma = sum(gaussian_values >= (mu - 3*sigma) & gaussian_values <= (mu + 3*sigma)) / n * 100;  % Percentage within 3 standard deviations


% Display the results

fprintf('Percentage of values within 1 standard deviation: %.2f%%\n', range_1sigma);

fprintf('Percentage of values within 2 standard deviations: %.2f%%\n', range_2sigma);

fprintf('Percentage of values within 3 standard deviations: %.2f%%\n', range_3sigma);


% Plotting the Gaussian distribution

figure;

histogram(gaussian_values, 30, 'Normalization', 'pdf');  % Normalized to show probability density

title('Gaussian Distribution (Standard Normal)');

xlabel('Value');

ylabel('Probability Density');


Output

Percentage of values within 1 standard deviation: 68.36%

Percentage of values within 2 standard deviations: 95.40%

Percentage of values within 3 standard deviations: 99.73%









Copy the aforementioned MATLAB Code from here003


Real-world mathematical examples to understand mean and standard Deviation

Mean of a Random Variable

As we have mentioned above, noise is random in a communication system. So, we take hundreds of values of that parameter and draw a PDF. For example, we have received ten random variables, i.e., X1, X2, X3, X4,..., X9, and X10. Then we calculate its mean or average. That is also meaningful.


Xmean = (X1 + X2 + X3+... +X8 +X9 +X10)/10


Standard Deviation of a Random Variable

In electronic communication, the standard signal deviation tells us how the signal varies over time. For example, we measure a signal in different time instants, from a different position, or at another aspect. Then we can calculate the standard Deviation to see how the signal varies. That value also matters for electronic devices. Similarly, we calculate the standard deviation value from many samples in the case of a Gaussian random variable. For example, in a class, marks obtained in math by students are as follows:

Student 1: 92 out of 100

Student 2: 85 out of 100

Student 3: 74 out of 100

Student 4: 70 out of 100

Student 5: 60 out of 100

Student 6: 66 out of 100

Student 7: 82 out of 100

Student 8: 63 out of 100

Student 9: 76 out of 100

Student 10: 59 out of 100


The average marks obtained by students are calculated as

=(92+85+74+70+60+66+82+63+76+59)/10

=72.7

The mean value is 72.7


Now, we'll calculate Standard Deviation,

Std or σ= sqrt{(1/(N-1) * Σ(Ni -N0)^2}

Here, N= total number of sample

Ni denotes the instantaneous value of  N

N0 denotes the mean of N

'sqrt' denotes 'square root' here


The standard Deviation for obtained marks by students is,

Std or σ =sqrt{1/(10-1) * Σ (Ni -72.7)^2} 

(as here several samples or population is 10 & mean/avg. =72.7)

Or, σ = sqrt [1/9 * {(92-72.7)^2 + (85-72.7)^2 + (74-72.7)^2 + (70-72.7)^2 + (60-72.7)^2 + ... +(76-72.7)^2 + (59-72.7)^2}]

Or, σ = 10.57

Standard Deviation, in many cases defined as the notation σ (sigma). The standard Deviation (σ ) indicates how far a 'typical' observation deviates from the data's average or mean value, μ.



People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

 Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence into an MSK-modulated signal % Inputs: % bits - Binary input sequence % carrierFreq - Carri...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add AWGN Noise Modulation Type BPSK BFSK ...

Fundamentals of Channel Estimation

Channel Estimation Techniques Channel Estimation is an auto-regressive process that may be performed with a number of iterations. There are commonly three types of channel estimation approaches. 1. Pilot estimation  2. Blind estimation  3. Semi-blind estimation. For Channel Estimation,  CIR [↗] is used. The amplitudes of the impulses decrease over time and are not correlated. For example, y(n) = h(n) * x(n) + w(n) where y(n) is the received signal, x(n) is the sent signal, and w(n) is the additive white gaussian noise At the next stage, h(n+1) = a*h(n) + w(n) The channel coefficient will be modified as stated above at the subsequent stage. The scaling factor "a" determines the impulse's amplitude, whereas "h(n+1)" represents the channel coefficient at the following stage. Pilot Estimation Method To understand how a communication medium is currently behaving, a channel estimate is necessary. In order to monitor a channel's behavior in practice communication ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

Constellation Diagram of FSK in Detail

  Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK) . Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel. Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'. Simulator for 2-FSK Constellation Diagram Simulator for 2-FSK Constellation Diagram SNR (dB): 15 Add AWGN Noise Run Simulation ...

Gaussian minimum shift keying (GMSK)

Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (τ) dτ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a high-frequency carrier wave: s(t) = cos(2πf c t + θ(t)) Here, f c is the carrier frequency, and s(t) represents the continuous-phase modulated carrier wave. Quadrature Modulation (Optional) ...