Skip to main content

Gaussian random variable and its PDF in MATLAB


Home / Wireless Communication / Gaussian random variable and its PDF



What exactly are Gaussian Random Variable and its probability distribution function (PDF) are


 The practical communication system is modeled as 

y = x + n;

Where y=received  signal 

x= transmitted signal 

n= noise


What is the significance of the Gaussian Random Variable?  

We know, especially for wireless communication, whenever we transmit a signal from transmitter to receiver, there will be some additive white Gaussian noise to the signal when we receive it from the receiver. The additive white Gaussian noise has some properties, like zero mean and a specific standard deviation. We learn later what exactly they mean, what Deviations are, and the relation of the Gaussian random variable with it. Here, the word "random" is used because noise is always unexpected in the communication system. We can't predict it before the transmission of the signal. But we can draw its probability distribution function (PDF) from several experiments or values. 



What exactly is Gaussian Random Variable PDF is

PDF of Gaussian random variable is defined as


Here, σ = Standard Deviation of random variable samples

μ = mean of random variable samples

In the above figure probability distribution function of the Gaussian random variable is shown. Students often need clarification with the title of the x label and y label. x tag defines the variation of the standard deviation value of Gaussian noise collected from large samples or populations or many experiments. After getting the standard Deviation of noise,e we plot the probability of standard deviations derived from large samples. 


MATLAB Code for gaussian random variable and its PDF

clear;

close all;


% Number of samples to generate

n = 100000;


% Generate Gaussian distribution (Standard Normal Distribution)

gaussian_values = randn(1, n);  % Standard normal distribution (mean = 0, std = 1)


% Calculate mean and standard deviation of the Gaussian values

mu = mean(gaussian_values);

sigma = std(gaussian_values);


% Calculate the range for 1, 2, and 3 standard deviations

range_1sigma = sum(gaussian_values >= (mu - sigma) & gaussian_values <= (mu + sigma)) / n * 100;  % Percentage within 1 standard deviation

range_2sigma = sum(gaussian_values >= (mu - 2*sigma) & gaussian_values <= (mu + 2*sigma)) / n * 100;  % Percentage within 2 standard deviations

range_3sigma = sum(gaussian_values >= (mu - 3*sigma) & gaussian_values <= (mu + 3*sigma)) / n * 100;  % Percentage within 3 standard deviations


% Display the results

fprintf('Percentage of values within 1 standard deviation: %.2f%%\n', range_1sigma);

fprintf('Percentage of values within 2 standard deviations: %.2f%%\n', range_2sigma);

fprintf('Percentage of values within 3 standard deviations: %.2f%%\n', range_3sigma);


% Plotting the Gaussian distribution

figure;

histogram(gaussian_values, 30, 'Normalization', 'pdf');  % Normalized to show probability density

title('Gaussian Distribution (Standard Normal)');

xlabel('Value');

ylabel('Probability Density');


Output

Percentage of values within 1 standard deviation: 68.36%

Percentage of values within 2 standard deviations: 95.40%

Percentage of values within 3 standard deviations: 99.73%









Copy the aforementioned MATLAB Code from here003


Real-world mathematical examples to understand mean and standard Deviation

Mean of a Random Variable

As we have mentioned above, noise is random in a communication system. So, we take hundreds of values of that parameter and draw a PDF. For example, we have received ten random variables, i.e., X1, X2, X3, X4,..., X9, and X10. Then we calculate its mean or average. That is also meaningful.


Xmean = (X1 + X2 + X3+... +X8 +X9 +X10)/10


Standard Deviation of a Random Variable

In electronic communication, the standard signal deviation tells us how the signal varies over time. For example, we measure a signal in different time instants, from a different position, or at another aspect. Then we can calculate the standard Deviation to see how the signal varies. That value also matters for electronic devices. Similarly, we calculate the standard deviation value from many samples in the case of a Gaussian random variable. For example, in a class, marks obtained in math by students are as follows:

Student 1: 92 out of 100

Student 2: 85 out of 100

Student 3: 74 out of 100

Student 4: 70 out of 100

Student 5: 60 out of 100

Student 6: 66 out of 100

Student 7: 82 out of 100

Student 8: 63 out of 100

Student 9: 76 out of 100

Student 10: 59 out of 100


The average marks obtained by students are calculated as

=(92+85+74+70+60+66+82+63+76+59)/10

=72.7

The mean value is 72.7


Now, we'll calculate Standard Deviation,

Std or σ= sqrt{(1/(N-1) * Σ(Ni -N0)^2}

Here, N= total number of sample

Ni denotes the instantaneous value of  N

N0 denotes the mean of N

'sqrt' denotes 'square root' here


The standard Deviation for obtained marks by students is,

Std or σ =sqrt{1/(10-1) * Σ (Ni -72.7)^2} 

(as here several samples or population is 10 & mean/avg. =72.7)

Or, σ = sqrt [1/9 * {(92-72.7)^2 + (85-72.7)^2 + (74-72.7)^2 + (70-72.7)^2 + (60-72.7)^2 + ... +(76-72.7)^2 + (59-72.7)^2}]

Or, σ = 10.57

Standard Deviation, in many cases defined as the notation σ (sigma). The standard Deviation (σ ) indicates how far a 'typical' observation deviates from the data's average or mean value, μ.



People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Simulator for m-ary QAM and m-ary PSK 🧮 MATLAB Codes 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview 🧮 Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory 🧮 MATLAB Codes 📚 Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

ASK, FSK, and PSK

📘 Overview 📘 Amplitude Shift Keying (ASK) 📘 Frequency Shift Keying (FSK) 📘 Phase Shift Keying (PSK) 📘 Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? 🧮 MATLAB Codes 📘 Simulator for binary ASK, FSK, and PSK Modulation 📚 Further Reading   ASK or OFF ON Keying Ask is a simple (less complex)  Digital Modulation Scheme  where we vary the  modulation  signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  t...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

📘 Overview 🧮 Multipath Components or MPCs 🧮 Excess Delay spread 🧮 Power delay Profile 🧮 RMS Delay Spread 🧮 Simulator for Calculating RMS Delay Spread 🧮 Why is there significant multipath in the case of very high frequencies? 🧮 Why RMS Delay Spread is essential for wireless communication? 🧮 Why the Power Delay Profile is essential? 🧮 MATLAB Codes 📚 Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Codes 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading   BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is...