Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Filters Computer Networks

Gaussian random variable and its PDF


Home / Wireless Communication / Gaussian random variable and its PDF



What exactly are Gaussian Random Variable and its PDF are


 The practical communication system is modeled as 

y = x + n;

Where y=received  signal 

x= transmitted signal 

n= noise


What is the significance of the Gaussian Random Variable?  

We know, especially for wireless communication, whenever we transmit a signal from transmitter to receiver, there will be some additive white Gaussian noise to the signal when we receive it from the receiver. The additive white Gaussian noise has some properties, like zero mean and a specific standard deviation. We learn later what exactly they mean, what Deviations are, and the relation of the Gaussian random variable with it. Here, the word "random" is used because noise is always unexpected in the communication system. We can't predict it before the transmission of the signal. But we can draw its probability distribution function (PDF) from several experiments or values. 



What exactly is Gaussian Random Variable PDF is

PDF of Gaussian random variable is defined as


Here, Ïƒ = Standard Deviation of random variable samples

μ = mean of random variable samples

In the above figure probability distribution function of the Gaussian random variable is shown. Students often need clarification with the title of the x label and y label. x tag defines the variation of the standard deviation value of Gaussian noise collected from large samples or populations or many experiments. After getting the standard Deviation of noise,e we plot the probability of standard deviations derived from large samples. 

You see values like, -10, -8, -6, ...., 0, +6, +8, and +10 on the x-axis. If you notice t, you can see that the probability of a standard Deviation of value 2 is around 0.18. Here actually, the likelihood of two times of standard deviation is 0.18. Similarly, the 2σ or 2 times the expected deviation probability is around 0.02.


Real-world mathematical examples to understand mean and standard Deviation

Mean of a Random Variable

As we have mentioned above, noise is random in a communication system. So, we take hundreds of values of that parameter and draw a PDF. For example, we have received ten random variables, i.e., X1, X2, X3, X4,..., X9, and X10. Then we calculate its mean or average. That is also meaningful.


Xmean = (X1 + X2 + X3+... +X8 +X9 +X10)/10


Standard Deviation of a Random Variable

In electronic communication, the standard signal deviation tells us how the signal varies over time. For example, we measure a signal in different time instants, from a different position, or at another aspect. Then we can calculate the standard Deviation to see how the signal varies. That value also matters for electronic devices. Similarly, we calculate the standard deviation value from many samples in the case of a Gaussian random variable. For example, in a class, marks obtained in math by students are as follows:

Student 1: 92 out of 100

Student 2: 85 out of 100

Student 3: 74 out of 100

Student 4: 70 out of 100

Student 5: 60 out of 100

Student 6: 66 out of 100

Student 7: 82 out of 100

Student 8: 63 out of 100

Student 9: 76 out of 100

Student 10: 59 out of 100


The average marks obtained by students are calculated as

=(92+85+74+70+60+66+82+63+76+59)/10

=72.7

The mean value is 72.7


Now, we'll calculate Standard Deviation,

Std or Ïƒ= sqrt{(1/(N-1) * Σ(Ni -N0)^2}

Here, N= total number of sample

Ni denotes the instantaneous value of  N

N0 denotes the mean of N

'sqrt' denotes 'square root' here


The standard Deviation for obtained marks by students is,

Std or Ïƒ =sqrt{1/(10-1) * Î£ (Ni -72.7)^2} 

(as here several samples or population is 10 & mean/avg. =72.7)

Or, Ïƒ = sqrt [1/9 * {(92-72.7)^2 + (85-72.7)^2 + (74-72.7)^2 + (70-72.7)^2 + (60-72.7)^2 + ... +(76-72.7)^2 + (59-72.7)^2}]

Or, Ïƒ = 10.57

Standard Deviation, in many cases defined as the notation Ïƒ (sigma). The standard Deviation (σ ) indicates how far a 'typical' observation deviates from the data's average or mean value, Î¼.



People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK ASK or OFF ON Keying Ask is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  then it transmits no power. But the receiver is intelligent enough to deflect whether you've sent binary bit  "1"  or  "0

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2018] UGC Net Electronic Science Questions With Answer Key Download Pdf [July 2018] UG

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal to Noise Ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power is twice as

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between two signals or symbols. Figure 1: Constellation diagrams of ASK, PSK, and FSK The constellation points for ASK, PSK, and FSK [↗] are located in a different pattern, and the distances between the constellation points vary. According to the above diagram, the distance between ASK constellation points is (√Eb -0) = √Eb (where Eb stands for energy per bit). From the above figure, you can also see the distances between constellation points for PSK and FSK are 2√Eb and √(2Eb), respectively. In a constellation diagram, if the distance between signaling points is less, then the probability

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear all; close all; EbN0=-4:1:24; % Signal to Noise Ratio per Bit (in dB) EbN0ratio=10.^(EbN0/10); % Converted into ratio colors={'k-*','r-h','g-o','c-s','m-s','y-*','k-p','b:s','m:d','g:p'}; index=1; %BPSK BPSK_BER = 0.5*erfc(sqrt(EbN0ratio)); plotHandle=plot(EbN0,log10(BPSK_BER),char(colors(index))); set(plotHandle,'LineWidth',1.7); hold on; index=index+1; %M-PSK m=2:1:5; M=2.^m; for i=M, k=log2(i); PSK_BER = 1/k*erfc(sqrt(EbN0ratio*k)*sin(pi/i)); plotHandle=plot

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;