Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Filters Computer Networks

Pulse Code Modulation


'PCM' is the abbreviation for 'pulse code modulation.' To digitalize an analogue signal (i.e., voice signal) in a digital communication system, we usually employ the sampling technique. Before moving on to the main topic, we need to talk about sampling technique in more detail.

Before moving on to the main topic, we need to talk about sampling technique in more detail.

Sampling:


Sampling is a switching approach in which a switch is turned on in a specific time interval. Imagine a continuous voice signal passing through such a system; instead of a continuous signal, we get pulses at specific time intervals. Now the question arises as to how quickly that switching (sampling) operation must be completed for reliable transmission. Because we know that digital stuff requires less memory than analogue content. There is a restriction of sampling frequency which should be at least twice the message signal’s frequency.


Quantization:


Computers do not understand human language; they can only comprehend machine languages, which are essentially '0' and '1'. However, you are familiar with how real-world signals (such as voice signals) seem. If we only assign '0' and '1' to the sample values, we can clearly comprehend that they are all unique, but we are only representing them as '0' and '1'. That isn't right. That is why we use quantization to represent each sample value with a more meaningful notation, such as 0001, 0010, 0011, and so on. We can express 16 various levels of a signal with a 4 bit quantizer (as 2^4 =16), such as 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110.

For instance, in a simple system, there are two levels: the top level is +5 Volt, and the lower level is -5 Volt. As a result, the overall voltage range is +5 – (-5) = 10 Volts.

Now, (Vmax – Vmin) / 2 = 10/2 = 5 Volt is the step size.

We can now declare that if the voltage is between '0' and '5' Volts, we express it as '1'. When the signal value is between '0' and '-5' Volt, the value is set to '0'. Similarly, the number of levels in a 3 bit quantizer is 2^3= 8. Each step size is (10/3) Volts, or 3.33 Volts, if the overall voltage spread is 10 Volts. The step size is frequently expressed as delta (∆). We'll use it as a notation in the future.

Let us now discuss quantization error.


Error in Quantization:


The maximum quantization error will be ∆/2 in this case. If a signal falls between '0' and '5,' Volt there is a potential of getting a 2.5-volt error if it goes in the middle of those two levels. In the worst-case scenario, it can be quantized incorrectly as '0' or '1'. By increasing the levels and decreasing the step size, we may reduce the bit error.


Question:


Six signals are multiplexed using TDM, and the number of quantization levels employed is 256. What is the signal's transmission bandwidth? (The frequency of the message signal is 5 KHz.)
Answer:

Given,

In TDM, the number of signals for multiplexing is N = 6.

fm = 5 KHz is the frequency of the message signal.

n = 8 bits/sample in PCM

L = 256 is the number of quantization levels.

As a result, bandwidth equals (N*n*fs) / 2.


Alternatively, N*n*2fm /2

Or, 6*8*2*5 / 2 = 6*8*2*5

= 240 KHz


The PCM system's bit rate is now

N*n*2fm

=6*8*2*5

=480 kbps



MATLAB Code for Pulse Code Modulation: 

 
 
 

 


Get MATLAB Code from here

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK ASK or OFF ON Keying Ask is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  then it transmits no power. But the receiver is intelligent enough to deflect whether you've sent binary bit  "1"  or  "0

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2018] UGC Net Electronic Science Questions With Answer Key Download Pdf [July 2018] UG

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal to Noise Ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power is twice as

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between two signals or symbols. Figure 1: Constellation diagrams of ASK, PSK, and FSK The constellation points for ASK, PSK, and FSK [↗] are located in a different pattern, and the distances between the constellation points vary. According to the above diagram, the distance between ASK constellation points is (√Eb -0) = √Eb (where Eb stands for energy per bit). From the above figure, you can also see the distances between constellation points for PSK and FSK are 2√Eb and √(2Eb), respectively. In a constellation diagram, if the distance between signaling points is less, then the probability

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear all; close all; EbN0=-4:1:24; % Signal to Noise Ratio per Bit (in dB) EbN0ratio=10.^(EbN0/10); % Converted into ratio colors={'k-*','r-h','g-o','c-s','m-s','y-*','k-p','b:s','m:d','g:p'}; index=1; %BPSK BPSK_BER = 0.5*erfc(sqrt(EbN0ratio)); plotHandle=plot(EbN0,log10(BPSK_BER),char(colors(index))); set(plotHandle,'LineWidth',1.7); hold on; index=index+1; %M-PSK m=2:1:5; M=2.^m; for i=M, k=log2(i); PSK_BER = 1/k*erfc(sqrt(EbN0ratio*k)*sin(pi/i)); plotHandle=plot

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;