Skip to main content

MATLAB Code Constellation Diagrams of M-ary PSK (e.g, 4, 8, 16, 32, 64, 128)



What is the difference between Bit and Symbol in the perspective of transmission?

Symbols use bandwidth more efficiently than bits. For example, in the case of QPSK, one symbol or signal waveform is represented by 2 bits. Hence symbol rate is one-half of the bit rate. As a result, it occupies half bandwidth compared to the BPSK waveform.

We know the primary purpose of modulation [↗] is to multiplex data. Here multiplexing is done so that there is less interference between parallel data streams. Suppose there is a communication channel; we can transmit a single data stream simultaneously. But if we send a symbol instead of a bit, we can send more than 1 bit at a time. In ASK modulation, we assign two amplitude levels to a signal where a higher level is represented by binary '1' and another level as '0'. For BFSK, we apply phase shift in signal (for example, 0 phase shift for consecutive binary '0' bits and 180 phase shift for a binary bit '1'. ASK, FSK, and PSK [↗] - are primary modulation techniques. With the help of those modulation techniques, we derive many other digital modulations capable of carrying more bits thru a channel as a symbol at a time. For example, in QPSK (Quadrature Phase Shift Keying), we can transmit a symbol two bits at a time thru a channel. A total of 4 symbols use 2 bits per symbol and a phase difference of 90 degrees between them. An example of QPSK is shown below. Here you see that the data rate of the channel is getting double when we transmit 2 bits at a time.


1. What is a constellation diagram


A constellation diagram represents a signal modulated by a digital signal, such as quadrature amplitude modulation (QAM) or quadrature phase shift keying (QPSK). [Read More]


QPSK


Assume we need to modulate four signals or symbols with phase differences of Ï€/2 so that the signals can be orthogonal, which will minimize their mutual interference. Then we can modulate those signals in the following way:

s(t)=Acos(2Ï€fct) for 00

= A cos (2Ï€fct + 90) for 01

= A cos (2Ï€fct + 180) for 10

= A cos (2Ï€fct + 270) for 11

Here, the first signal is modulated with a carrier signal. The next signal is modulated with π/2 shifted same carrier signal, the third signal with additional π/2 shifted to the same carrier signal, and so on. The modulated first signal is represented by the symbol '00', the second modulated signal by the symbol '01', and so forth.





In the above figure, we've shown a constellation diagram of 4 QPSK modulations.


Also, read about the Constellation Diagrams of ASK, FSK, and PSK, Constellation Diagrams of M-ary QAM


2. What is the significance of M-ary PSK?


In Mary PSK, given data bits are modulated with any of the M numbers of phase-shifted carrier signals. Let's send M number of data bits modulated with M number of phase-shifted carriers. Theoretically, there will be no interference (theoretically) between them, and we will achieve 8 times the previous data rate (without modulation).

The RF carrier's phase (or frequency) varies instead of only varying the RF signal's phase, frequency, or amplitude. Mary modulation algorithms transfer baseband data into four or more alternative RF carrier signals since the envelope and phase provide two degrees of freedom. We are talking about four carrier signals because here, 2 or more bits form a symbol, and from 2 bits, we can represent 2^(2) or 4 different signals. M-ary modulation is the name given to such modulation schemes. Two or more bits are joined together to create symbols in the M-ary modulation scheme, and one of the available signals S1(t), S2(t),..., Sm(t) is sent during each symbol period Ts. M = 2^n, where n is an integer that defines the number of bits/symbols, the total number of possible signals.

The modulation is called M-ary ASK, M-ary PSK, or M-ary FSK, depending on whether the amplitude, phase, or frequency is altered. M-ary modulation techniques are appealing for application in bandlimited channels because they improve bandwidth efficiency while sacrificing power efficiency. For example, an 8-PSK system utilizes the channel log8 (base 2) = 3 times more efficiently than a 2-PSK (also known as BPSK) system, as the bandwidth of a physical channel is always limited. M-ary signaling, on the other hand, has lower error performance due to the reduced distances between signals in the constellation diagram. The following sections go through a few of the most common M-ary signaling methods.

8-PSK 

 

16-PSK

 

 
 

MATLAB Code for M-ary PSK (e.g, 4, 8, 16, 32, 64, 128)

%The code is developed by SalimWireless.com
% M-ary PSK Modulation and Demodulation
clc;
clear;
close all;

% Parameters
M = 32;  % Order of PSK (M-PSK)
N = 1000;  % Number of symbols
SNR = 10;  % Signal-to-Noise Ratio in dB

% Generate random data symbols
dataSymbols = randi([0 M-1], N, 1);

% Modulate using M-PSK
txSignal = pskmod(dataSymbols, M);

% Add AWGN noise
rxSignal = awgn(txSignal, SNR, 'measured');

% Demodulate
demodulatedSymbols = pskdemod(rxSignal, M);

% Calculate symbol error rate
symbolErrors = sum(dataSymbols ~= demodulatedSymbols);
SER = symbolErrors / N;

% Display results
disp(['Symbol Error Rate (SER): ', num2str(SER)]);

% Plot constellation diagrams
figure;
subplot(2, 1, 1);
plot(real(txSignal), imag(txSignal), 'o');
grid on;
title('Transmitted Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');

subplot(2, 1, 2);
plot(real(rxSignal), imag(rxSignal), 'o');
grid on;
title('Received Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');

Output






Copy the MATLAB Code above from here



3. What can we conclude from the above M-ary PSK


Both QPSK and QAM are used to send signals in the form of symbols and to increase the bit rate. If you send a symbol instead of a single bit at a time, then multiple prior data rates will be achieved. Those mary modulation techniques are used to multiplex data.

If you are using simple ASK, FSK, or 2-PSK, and if the data rate is N

Then, the following modulation techniques increase data rates further.

4-PSK, 4-QAM ==>2N

Because here 2 bits are sent as a symbol once

8-PSK, 8-QAM ==>3N

Because here 3 bits are sent as a symbol once

Read More about OFDM, QAM, QPSK, BPSK, FSK, etc.


constellation diagram of qpsk  # qpsk constellation diagram  # Constellation diagram of ask psk fsk


Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Online Channel Impulse Response Simulator

  Fundamental Theory of Channel Impulse Response The fundamental theory behind the channel impulse response in wireless communication often involves complex exponential components such as: \( h(t) = \sum_{i=1}^{L} a_i \cdot \delta(t - \tau_i) \cdot e^{j\theta_i} \) Where: \( a_i \) is the amplitude of the \( i^{th} \) path \( \tau_i \) is the delay of the \( i^{th} \) path \( \theta_i \) is the phase shift (often due to Doppler effect, reflection, etc.) \( e^{j\theta_i} \) introduces a phase rotation (complex exponential) The convolution \( x(t) * h(t) \) gives the received signal So, instead of representing the channel with only real-valued amplitudes, each path can be more accurately modeled using a complex gain : \( h[n] = a_i \cdot e^{j\theta_i} \) 1. Simple Channel Impulse Response Simulator  (Here you can input only a unit impulse signal) Input Signal (Unit Impu...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. Coherence bandwidth is inversely related to the delay spread time (e.g., RMS delay spread). The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel due to multipath. The two are related by the following approximation: Coherence Bandwidth ≈ 1/(delay spread time) Or, Coherence Bandwidth ≈ 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, if the root-mean-square delay spread is 500 ns (i.e., {1/(2*10^6)} seconds), the coherence bandwidth is approximately 2 MHz (1 / 500e-9) in ...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...