Skip to main content

Constellation Diagrams of M-ary PSK | M-ary Modulation



What is the difference between Bit and Symbol in the perspective of transmission?

Symbols use bandwidth more efficiently than bits. For example, in the case of QPSK, one symbol or signal waveform is represented by 2 bits. Hence symbol rate is one-half of the bit rate. As a result, it occupies half bandwidth compared to the BPSK waveform.

We know the primary purpose of modulation [↗] is to multiplex data. Here multiplexing is done so that there is less interference between parallel data streams. Suppose there is a communication channel; we can transmit a single data stream simultaneously. But if we send a symbol instead of a bit, we can send more than 1 bit at a time. In ASK modulation, we assign two amplitude levels to a signal where a higher level is represented by binary '1' and another level as '0'. For BFSK, we apply phase shift in signal (for example, 0 phase shift for consecutive binary '0' bits and 180 phase shift for a binary bit '1'. ASK, FSK, and PSK [↗] - are primary modulation techniques. With the help of those modulation techniques, we derive many other digital modulations capable of carrying more bits thru a channel as a symbol at a time. For example, in QPSK (Quadrature Phase Shift Keying), we can transmit a symbol two bits at a time thru a channel. A total of 4 symbols use 2 bits per symbol and a phase difference of 90 degrees between them. An example of QPSK is shown below. Here you see that the data rate of the channel is getting double when we transmit 2 bits at a time.


1. What is a constellation diagram


A constellation diagram represents a signal modulated by a digital signal, such as quadrature amplitude modulation (QAM) or quadrature phase shift keying (QPSK). [Read More]


QPSK


Assume we need to modulate four signals or symbols with phase differences of ฯ€/2 so that the signals can be orthogonal, which will minimize their mutual interference. Then we can modulate those signals in the following way:

s(t)=Acos(2ฯ€fct) for 00

= A cos (2ฯ€fct + 90) for 01

= A cos (2ฯ€fct + 180) for 10

= A cos (2ฯ€fct + 270) for 11

Here, the first signal is modulated with a carrier signal. The next signal is modulated with ฯ€/2 shifted same carrier signal, the third signal with additional ฯ€/2 shifted to the same carrier signal, and so on. The modulated first signal is represented by the symbol '00', the second modulated signal by the symbol '01', and so forth.





In the above figure, we've shown a constellation diagram of 4 QPSK modulations.


Also, read about the Constellation Diagrams of ASK, FSK, and PSK, Constellation Diagrams of M-ary QAM


2. What is the significance of M-ary PSK?


In Mary PSK, given data bits are modulated with any of the M numbers of phase-shifted carrier signals. Let's send M number of data bits modulated with M number of phase-shifted carriers. Theoretically, there will be no interference (theoretically) between them, and we will achieve 8 times the previous data rate (without modulation).

The RF carrier's phase (or frequency) varies instead of only varying the RF signal's phase, frequency, or amplitude. Mary modulation algorithms transfer baseband data into four or more alternative RF carrier signals since the envelope and phase provide two degrees of freedom. We are talking about four carrier signals because here, 2 or more bits form a symbol, and from 2 bits, we can represent 2^(2) or 4 different signals. M-ary modulation is the name given to such modulation schemes. Two or more bits are joined together to create symbols in the M-ary modulation scheme, and one of the available signals S1(t), S2(t),..., Sm(t) is sent during each symbol period Ts. M = 2^n, where n is an integer that defines the number of bits/symbols, the total number of possible signals.

The modulation is called M-ary ASK, M-ary PSK, or M-ary FSK, depending on whether the amplitude, phase, or frequency is altered. M-ary modulation techniques are appealing for application in bandlimited channels because they improve bandwidth efficiency while sacrificing power efficiency. For example, an 8-PSK system utilizes the channel log8 (base 2) = 3 times more efficiently than a 2-PSK (also known as BPSK) system, as the bandwidth of a physical channel is always limited. M-ary signaling, on the other hand, has lower error performance due to the reduced distances between signals in the constellation diagram. The following sections go through a few of the most common M-ary signaling methods.

8-PSK 

 

16-PSK

 

 
 

MATLAB Code for M-ary PSK (e.g, 4, 8, 16, 32, 64, 128)

%The code is developed by SalimWireless.com
% M-ary PSK Modulation and Demodulation
clc;
clear;
close all;

% Parameters
M = 32;  % Order of PSK (M-PSK)
N = 1000;  % Number of symbols
SNR = 10;  % Signal-to-Noise Ratio in dB

% Generate random data symbols
dataSymbols = randi([0 M-1], N, 1);

% Modulate using M-PSK
txSignal = pskmod(dataSymbols, M);

% Add AWGN noise
rxSignal = awgn(txSignal, SNR, 'measured');

% Demodulate
demodulatedSymbols = pskdemod(rxSignal, M);

% Calculate symbol error rate
symbolErrors = sum(dataSymbols ~= demodulatedSymbols);
SER = symbolErrors / N;

% Display results
disp(['Symbol Error Rate (SER): ', num2str(SER)]);

% Plot constellation diagrams
figure;
subplot(2, 1, 1);
plot(real(txSignal), imag(txSignal), 'o');
grid on;
title('Transmitted Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');

subplot(2, 1, 2);
plot(real(rxSignal), imag(rxSignal), 'o');
grid on;
title('Received Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');

Output






Copy the MATLAB Code above from here



3. What can we conclude from the above M-ary PSK


Both QPSK and QAM are used to send signals in the form of symbols and to increase the bit rate. If you send a symbol instead of a single bit at a time, then multiple prior data rates will be achieved. Those mary modulation techniques are used to multiplex data.

If you are using simple ASK, FSK, or 2-PSK, and if the data rate is N

Then, the following modulation techniques increase data rates further.

4-PSK, 4-QAM ==>2N

Because here 2 bits are sent as a symbol once

8-PSK, 8-QAM ==>3N

Because here 3 bits are sent as a symbol once

Read More about OFDM, QAM, QPSK, BPSK, FSK, etc.


constellation diagram of qpsk  # qpsk constellation diagram  # Constellation diagram of ask psk fsk


Further Reading

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿ“˜ Amplitude Shift Keying (ASK) ๐Ÿ“˜ Frequency Shift Keying (FSK) ๐Ÿ“˜ Phase Shift Keying (PSK) ๐Ÿ“˜ Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? ๐Ÿงฎ MATLAB Codes ๐Ÿ“˜ Simulator for binary ASK, FSK, and PSK Modulation ๐Ÿ“š Further Reading   ASK or OFF ON Keying Ask is a simple (less complex)  Digital Modulation Scheme  where we vary the  modulation  signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  t...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

๐Ÿ“˜ Overview ๐Ÿงฎ Multipath Components or MPCs ๐Ÿงฎ Excess Delay spread ๐Ÿงฎ Power delay Profile ๐Ÿงฎ RMS Delay Spread ๐Ÿงฎ Simulator for Calculating RMS Delay Spread ๐Ÿงฎ Why is there significant multipath in the case of very high frequencies? ๐Ÿงฎ Why RMS Delay Spread is essential for wireless communication? ๐Ÿงฎ Why the Power Delay Profile is essential? ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together ๐Ÿงฎ MATLAB Code for M-ary QAM ๐Ÿงฎ MATLAB Code for M-ary PSK ๐Ÿ“š Further Reading   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols ...