Skip to main content

Analog Communication Systems Project | With MATLAB Code



You can work on amplitude modulation (AM), frequency modulation (FM), or phase modulation (PM) based analog communication projects in analog communication projects. You've probably heard that each town and city has its own radio station. It's commonly referred to as an 'FM Radio Station.' Frequency modulation (FM) is the technology utilized to operate such radio stations. It has a frequency range of 90 to 108 MHz.

A high-frequency carrier is required to transmit any baseband signal. It's nearly difficult without a carrier. We've already talked about why modulation is so important. You are welcome to look through it. We modulate our original speech signal with a high-frequency carrier wave and change the frequency of the modulated carrier signal by the amplitude or voltage of the voice signal to transmit it.

For your information, a vocal transmission, for example, is first translated into an electric signal. It is now known that distinct voltage levels exist for different signals. Now, the carrier wave's frequency is varied by the voltage or current of voice signals, allowing us to transfer data through free space or air.

Now, for a better understanding, we'll go over basic mathematical concepts.

Vc = A*Sin(θ) = A* Sin (wt + Φ)

The above equation is a modulated signal notation, which shows that all signals have some common properties such as amplitude, frequency, and phase. Our portfolio in this article is frequency modulation or FM. So, in this case, we're primarily interested in the modulated signal's frequency component.

As the amplitude or voltage of the speech signal varies, the carrier signal's frequency swings in a certain range. In that instance, we see a certain level of frequency deviation.

For instance, we can represent it numerically as follows:

Fi = Fc + ΔFc

where Fi is the instantaneous frequency that the FM receiver receives. Fc is the carrier signal's frequency, and ΔFc is the frequency deviation which is basically responsible for carrying information.

Assume, for example, that you have a wideband FM signal.

The standard bandwidth of a wideband FM is 200 kHz. A frequency deviation of +/-75 kHz is used on both sides, as well as an extra guard band of 25 kHz, to protect the signal from interference from other radio stations.

Now the entire band will have the same appearance.

25 KHz + 75 KHz + 75 KHz + 25 KHz (guard band + frequency deviation (due to -75 KHz deviation + frequency deviation (due to +75 KHz deviation + guard band)

As previously stated, the bandwidth of the above FM channels is 200 KHz. Wideband FM has been demonstrated in the example above.


When the ratio of the highest to lowest operating frequency (positive frequency) is substantially more than one. Then it's known as a wideband signal. On the other hand, if the radio is close to 1, it is referred to as a narrowband signal.


For realistic FM broadcasting First, the microphone converts the original voice signal to an electrical signal, which is then passed via a pre-amplifier to amplify the millivolt signal into a stronger signal, which helps to enhance the signal-to-noise ratio. The next stage is to use an oscillator to generate a high-frequency carrier wave, which is then modulated by the baseband message or speech signal. Final amplifiers compensate for signal attenuation after it has passed through the modulation step. Finally, the signal is sent from the transmitter to free space or air. Read More...


MATLAB code for FM (Frequency Modulation) Signal




Output











Also read about

[1] Digital Communication Mini Projects
[2] More Wireless Communication Projects/Thesis ideas for Final Year Students [click here]

#analog and digital communication projects

<<Previous Page

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Constellation Diagram of ASK in Detail

A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

Periodogram in MATLAB

Power Spectral Density Estimation Using the Periodogram Step 1: Signal Representation Let the signal be x[n] , where: n = 0, 1, ..., N-1 (discrete-time indices), N is the total number of samples. Step 2: Compute the Discrete-Time Fourier Transform (DTFT) The DTFT of x[n] is: X(f) = ∑ x[n] e -j2Ï€fn For practical computation, the Discrete Fourier Transform (DFT) is used: X[k] = ∑ x[n] e -j(2Ï€/N)kn , k = 0, 1, ..., N-1 k represents discrete frequency bins, f_k = k/N * f_s , where f_s is the sampling frequency. Step 3: Compute Power Spectral Density (PSD) The periodogram estimates the PSD as: S_x(f_k) = (1/N) |X[k]|² S_x(f_k) ...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024]  UGC Net Paper 1 With Answer Key Download Pdf [Sep 2024] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [Sep 2024]  UGC Net Paper 1 With Answer Key Download Pdf [June 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

5G Channel Estimation using Orthogonal Matching Pursuit (OMP)

5G Channel Estimation... For millimeter wave massive MIMO communication in 5G, we observe that the number of available multipath that avails communication is much smaller than the maximum connections possible between the transmitter(TX) and receiver(RX). Only a few MPCs reach at receiver with good received signal strength. For example, the number of strong MPCs that reaches the receiver is L and there is N transmitter antenna on the transmitter side and N number of antennas on the receiver side. So, from the channel matrix of the massive MIMO system, we can say the total number of available paths or connections between TX and RX is equal to, N X N or, N^(2) Now, L << N^(2) For simplicity, if the number of possible strong beams from the transmitter and receiver sides are NtBeams and NrBeams, then, L = NtBeams * NrBeams If we look up the massive MIMO channel matrix , then, H= Primarily, if the number of available MPCs to avail communication bet...