Skip to main content

5G Channel Estimation using Orthogonal Matching Pursuit (OMP)



For millimeter wave massive MIMO communication in 5G, we observe that the number of available multipath that avails communication is much smaller than the maximum connections possible between the transmitter(TX) and receiver(RX). Only a few MPCs reach at receiver with good received signal strength. For example, the number of strong MPCs that reaches the receiver is L and there is N transmitter antenna on the transmitter side and N number of antennas on the receiver side.

So, from the channel matrix of the massive MIMO system, we can say the total number of available paths or connections between TX and RX is equal to, N X N or, N^(2)

Now, L << N^(2)

For simplicity, if the number of possible strong beams from the transmitter and receiver sides are NtBeams and NrBeams, then, L = NtBeams * NrBeams

If we look up the massive MIMO channel matrix, then, H=



Primarily, if the number of available MPCs to avail communication between TX and RX are much lesser than the maximum connections possible, N^(2), then the channel matrix will be sparse. Because MPCs other than stronger L number of paths are so weak that they cannot communicate between TX and RX.

Sparse channel matrix means where the elements are zeros. We have nothing to do with those elements at all. So, we need such an algorithm that can sense the zeros of the channel matrix and we can transmit our signal thru that selected first L number of stronger paths. The orthogonal matching Pursuit (OMP) algorithm helps us to do that. It can sense a sparse matrix. OMP is sometimes termed as the "Compressive Sensing Method".


Orthogonal Matching Pursuit Algorithm:

Let assume, NtBeams = NrBeams = 28

Total stronger connections or paths, L = 28 * 28 = 784 (it is observational)

Also assume, the number of antennas at both the transmitter and receiver side is equal to 32

So, the channel matrix contains 32 * 32 elements or 1024 elements

Now, the Equivalent sensing matrix, Q (say), will have an array dimension of 784 X 1024


Mathematically,

y = Qhb + n

Here, y = received vector

Q = Equivalent sensing matrix

hb = beamspace channel matrix where the number of elements is N X N = N^(2). It is a sparse matrix as there are only L-acceptable elements out of N^(2)

n = noise


Also assume, Matrix Q contains n number of columns, like that,

Q = [q1 q2 q3 ..... qn]

Now, we focus on finding out the maximum in the context of which column with a projectile with y generates maximum value, such that,

i(1) = argmax |(qjH / ||qj||)*y| where, j=1,2,...,n

Let's assume, qi1 column in Q matrix contributes maximum value. Then find out using the least square solution

min ||y - qi1*hb1|| (We try to make it zero)

Where, hb1 is any column of hb

Where, hb1= (qi1H * qi1)^(-1) * qi1H *y


Now, take a residue matrix as,

r1 = y - qi1*hb1

Now, we'll find the maximum correlation of residue matrix r1 by finding out which column of Q with a projectile with r1 generates maximum value, such that,

i(2) = argmax|(qjH / ||qj||)*r1| where, j=1,2,...,n

Let assume, qi2 column in Q generates the maximum value

Now form a matrix, Qn, like that,

Qn = [qi1 qi2]

Now find out hb2

hb2 = (QnH * Qn)^(-1) * QnH *y

Now update the residue matrix as,

r2 = y - Qn*hb2

If norm of ||r(n-1) - rn|| falls below a threshold value, then close the loop

In our case, if we consider r2-r1 falls below the threshold, then we close the loop.

If we find hb2=[3;2] then we do such operations in hb matrix, such that,

and if i(1) = 5 and i(2) = 2

Then hb will be [0;2;0;0;3;0; ... up to 28th row all are 0]

Here, we place the element value of hb2 in hb matrix in such row with row number matches with the value of i(1) and i(2)


Mathematical Example of Orthogonal Matching Pursuit (OMP):

Let's assume, for a MIMO communication system,

The size of the equivalent sensing matrix, Q is 4 X 6

And received signal matrix, y=




Now, y = Qhb

Or,

Where, hb =beamspace matrix =



Let assume, Q = [ q1 q2 q3 q4 q5 q6]

Here, q1 is the first column of Q, q2 is the second column of Q, and so on.


First Iteration of Orthogonal Matching Pursuit:

Now we find the maximum correlation of y by finding out which column in Q generates the maximum value with the projection of y,

Or,

QT*y =



Here, we can see the element in the 5th row is the maximum among all elements. So, we’ll select the 5th column of Q with which y has the maximum correlation value.

Now, hb1 = (q5'*q5)^(-1) * q5'*y

Where q5’ denotes the transpose of q5

Or,

hb1 = 4

Residue Matrix, r1 = y – q5* hb1

Or, r1 =


Here, we observe residual matrix r1 is not a zero matrix. So, we go for 2nd iteration.

Second Iteration of Orthogonal Matching Pursuit

Where we find the maximum correlation of r1 with respect to Q matrix.

Alternatively,

QT*r1=


Now, we see the element in the 2nd row of the above matrix generates the maximum value so r1 has a maximum correlation with the 2nd column of Q Matrix.

Now, we’ll form a new matrix, Qn = [q5 q2]

We find hb2 = (Qn'*Qn)^(-1)*Qn'*y;

Or, hb2 =


Now updated residue matrix, r2 = y – Qn* hb2

Or, r2=


Now we get the desired value in residue matrix r2 where all elements are zeros. So, beamspace matrix, hb will be


Here, we replace the elemental value of hb in that rows which are equal with the number of columns which generates maximum values with projection with y, then r1, and so on.

Now, from the mathematics we can say,

y = Q* hb

Or,



<< Back to Previous Page


Further Reading

[1] Orthogonal Matching Pursuit (OMP) in Compressive Sensing (Theory)
#beamforming

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Question With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Question With Answer Key Download Pdf [December 2019] UGC Net Elec...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...