Skip to main content

5G Channel Estimation using Orthogonal Matching Pursuit (OMP)



For millimeter wave massive MIMO communication in 5G, we observe that the number of available multipath that avails communication is much smaller than the maximum connections possible between the transmitter(TX) and receiver(RX). Only a few MPCs reach at receiver with good received signal strength. For example, the number of strong MPCs that reaches the receiver is L and there is N transmitter antenna on the transmitter side and N number of antennas on the receiver side.

So, from the channel matrix of the massive MIMO system, we can say the total number of available paths or connections between TX and RX is equal to, N X N or, N^(2)

Now, L << N^(2)

For simplicity, if the number of possible strong beams from the transmitter and receiver sides are NtBeams and NrBeams, then, L = NtBeams * NrBeams

If we look up the massive MIMO channel matrix, then, H=



Primarily, if the number of available MPCs to avail communication between TX and RX are much lesser than the maximum connections possible, N^(2), then the channel matrix will be sparse. Because MPCs other than stronger L number of paths are so weak that they cannot communicate between TX and RX.

Sparse channel matrix means where the elements are zeros. We have nothing to do with those elements at all. So, we need such an algorithm that can sense the zeros of the channel matrix and we can transmit our signal thru that selected first L number of stronger paths. The orthogonal matching Pursuit (OMP) algorithm helps us to do that. It can sense a sparse matrix. OMP is sometimes termed as the "Compressive Sensing Method".


Orthogonal Matching Pursuit Algorithm:

Let assume, NtBeams = NrBeams = 28

Total stronger connections or paths, L = 28 * 28 = 784 (it is observational)

Also assume, the number of antennas at both the transmitter and receiver side is equal to 32

So, the channel matrix contains 32 * 32 elements or 1024 elements

Now, the Equivalent sensing matrix, Q (say), will have an array dimension of 784 X 1024


Mathematically,

y = Qhb + n

Here, y = received vector

Q = Equivalent sensing matrix

hb = beamspace channel matrix where the number of elements is N X N = N^(2). It is a sparse matrix as there are only L-acceptable elements out of N^(2)

n = noise


Also assume, Matrix Q contains n number of columns, like that,

Q = [q1 q2 q3 ..... qn]

Now, we focus on finding out the maximum in the context of which column with a projectile with y generates maximum value, such that,

i(1) = argmax |(qjH / ||qj||)*y| where, j=1,2,...,n

Let's assume, qi1 column in Q matrix contributes maximum value. Then find out using the least square solution

min ||y - qi1*hb1|| (We try to make it zero)

Where, hb1 is any column of hb

Where, hb1= (qi1H * qi1)^(-1) * qi1H *y


Now, take a residue matrix as,

r1 = y - qi1*hb1

Now, we'll find the maximum correlation of residue matrix r1 by finding out which column of Q with a projectile with r1 generates maximum value, such that,

i(2) = argmax|(qjH / ||qj||)*r1| where, j=1,2,...,n

Let assume, qi2 column in Q generates the maximum value

Now form a matrix, Qn, like that,

Qn = [qi1 qi2]

Now find out hb2

hb2 = (QnH * Qn)^(-1) * QnH *y

Now update the residue matrix as,

r2 = y - Qn*hb2

If norm of ||r(n-1) - rn|| falls below a threshold value, then close the loop

In our case, if we consider r2-r1 falls below the threshold, then we close the loop.

If we find hb2=[3;2] then we do such operations in hb matrix, such that,

and if i(1) = 5 and i(2) = 2

Then hb will be [0;2;0;0;3;0; ... up to 28th row all are 0]

Here, we place the element value of hb2 in hb matrix in such row with row number matches with the value of i(1) and i(2)


Mathematical Example of Orthogonal Matching Pursuit (OMP):

Let's assume, for a MIMO communication system,

The size of the equivalent sensing matrix, Q is 4 X 6

And received signal matrix, y=




Now, y = Qhb

Or,

Where, hb =beamspace matrix =



Let assume, Q = [ q1 q2 q3 q4 q5 q6]

Here, q1 is the first column of Q, q2 is the second column of Q, and so on.


First Iteration of Orthogonal Matching Pursuit:

Now we find the maximum correlation of y by finding out which column in Q generates the maximum value with the projection of y,

Or,

QT*y =



Here, we can see the element in the 5th row is the maximum among all elements. So, we’ll select the 5th column of Q with which y has the maximum correlation value.

Now, hb1 = (q5'*q5)^(-1) * q5'*y

Where q5’ denotes the transpose of q5

Or,

hb1 = 4

Residue Matrix, r1 = y – q5* hb1

Or, r1 =


Here, we observe residual matrix r1 is not a zero matrix. So, we go for 2nd iteration.

Second Iteration of Orthogonal Matching Pursuit

Where we find the maximum correlation of r1 with respect to Q matrix.

Alternatively,

QT*r1=


Now, we see the element in the 2nd row of the above matrix generates the maximum value so r1 has a maximum correlation with the 2nd column of Q Matrix.

Now, we’ll form a new matrix, Qn = [q5 q2]

We find hb2 = (Qn'*Qn)^(-1)*Qn'*y;

Or, hb2 =


Now updated residue matrix, r2 = y – Qn* hb2

Or, r2=


Now we get the desired value in residue matrix r2 where all elements are zeros. So, beamspace matrix, hb will be


Here, we replace the elemental value of hb in that rows which are equal with the number of columns which generates maximum values with projection with y, then r1, and so on.

Now, from the mathematics we can say,

y = Q* hb

Or,



<< Back to Previous Page


Further Reading

[1] Orthogonal Matching Pursuit (OMP) in Compressive Sensing (Theory)
#beamforming

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Constellation Diagram of ASK in Detail

A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024]  UGC Net Paper 1 With Answer Key Download Pdf [Sep 2024] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [Sep 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Question With Answer Key Download Pdf [June 2020] ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR va...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Theoretical BER vs SNR for BPSK

Theoretical Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) for BPSK in AWGN Channel Let’s simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel. Key Points Fig. 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation Transmits one of two signals: +√Eb or −√Eb , where Eb is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel The channel adds Gaussian noise with zero mean and variance N₀/2 (where N₀ is the noise power spectral density). Receiver Decision The receiver decides if the received signal is closer to +√Eb (for bit 0) or −√Eb (for bit 1) . Bit Error Rat...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...