Skip to main content

5G Channel Estimation using Orthogonal Matching Pursuit (OMP)



For millimeter wave massive MIMO communication in 5G, we observe that the number of available multipath that avails communication is much smaller than the maximum connections possible between the transmitter(TX) and receiver(RX). Only a few MPCs reach at receiver with good received signal strength. For example, the number of strong MPCs that reaches the receiver is L and there is N transmitter antenna on the transmitter side and N number of antennas on the receiver side.

So, from the channel matrix of the massive MIMO system, we can say the total number of available paths or connections between TX and RX is equal to, N X N or, N^(2)

Now, L << N^(2)

For simplicity, if the number of possible strong beams from the transmitter and receiver sides are NtBeams and NrBeams, then, L = NtBeams * NrBeams

If we look up the massive MIMO channel matrix, then, H=



Primarily, if the number of available MPCs to avail communication between TX and RX are much lesser than the maximum connections possible, N^(2), then the channel matrix will be sparse. Because MPCs other than stronger L number of paths are so weak that they cannot communicate between TX and RX.

Sparse channel matrix means where the elements are zeros. We have nothing to do with those elements at all. So, we need such an algorithm that can sense the zeros of the channel matrix and we can transmit our signal thru that selected first L number of stronger paths. The orthogonal matching Pursuit (OMP) algorithm helps us to do that. It can sense a sparse matrix. OMP is sometimes termed as the "Compressive Sensing Method".


Orthogonal Matching Pursuit Algorithm:

Let assume, NtBeams = NrBeams = 28

Total stronger connections or paths, L = 28 * 28 = 784 (it is observational)

Also assume, the number of antennas at both the transmitter and receiver side is equal to 32

So, the channel matrix contains 32 * 32 elements or 1024 elements

Now, the Equivalent sensing matrix, Q (say), will have an array dimension of 784 X 1024


Mathematically,

y = Qhb + n

Here, y = received vector

Q = Equivalent sensing matrix

hb = beamspace channel matrix where the number of elements is N X N = N^(2). It is a sparse matrix as there are only L-acceptable elements out of N^(2)

n = noise


Also assume, Matrix Q contains n number of columns, like that,

Q = [q1 q2 q3 ..... qn]

Now, we focus on finding out the maximum in the context of which column with a projectile with y generates maximum value, such that,

i(1) = argmax |(qjH / ||qj||)*y| where, j=1,2,...,n

Let's assume, qi1 column in Q matrix contributes maximum value. Then find out using the least square solution

min ||y - qi1*hb1|| (We try to make it zero)

Where, hb1 is any column of hb

Where, hb1= (qi1H * qi1)^(-1) * qi1H *y


Now, take a residue matrix as,

r1 = y - qi1*hb1

Now, we'll find the maximum correlation of residue matrix r1 by finding out which column of Q with a projectile with r1 generates maximum value, such that,

i(2) = argmax|(qjH / ||qj||)*r1| where, j=1,2,...,n

Let assume, qi2 column in Q generates the maximum value

Now form a matrix, Qn, like that,

Qn = [qi1 qi2]

Now find out hb2

hb2 = (QnH * Qn)^(-1) * QnH *y

Now update the residue matrix as,

r2 = y - Qn*hb2

If norm of ||r(n-1) - rn|| falls below a threshold value, then close the loop

In our case, if we consider r2-r1 falls below the threshold, then we close the loop.

If we find hb2=[3;2] then we do such operations in hb matrix, such that,

and if i(1) = 5 and i(2) = 2

Then hb will be [0;2;0;0;3;0; ... up to 28th row all are 0]

Here, we place the element value of hb2 in hb matrix in such row with row number matches with the value of i(1) and i(2)


Mathematical Example of Orthogonal Matching Pursuit (OMP):

Let's assume, for a MIMO communication system,

The size of the equivalent sensing matrix, Q is 4 X 6

And received signal matrix, y=




Now, y = Qhb

Or,

Where, hb =beamspace matrix =



Let assume, Q = [ q1 q2 q3 q4 q5 q6]

Here, q1 is the first column of Q, q2 is the second column of Q, and so on.


First Iteration of Orthogonal Matching Pursuit:

Now we find the maximum correlation of y by finding out which column in Q generates the maximum value with the projection of y,

Or,

QT*y =



Here, we can see the element in the 5th row is the maximum among all elements. So, we’ll select the 5th column of Q with which y has the maximum correlation value.

Now, hb1 = (q5'*q5)^(-1) * q5'*y

Where q5’ denotes the transpose of q5

Or,

hb1 = 4

Residue Matrix, r1 = y – q5* hb1

Or, r1 =


Here, we observe residual matrix r1 is not a zero matrix. So, we go for 2nd iteration.

Second Iteration of Orthogonal Matching Pursuit

Where we find the maximum correlation of r1 with respect to Q matrix.

Alternatively,

QT*r1=


Now, we see the element in the 2nd row of the above matrix generates the maximum value so r1 has a maximum correlation with the 2nd column of Q Matrix.

Now, we’ll form a new matrix, Qn = [q5 q2]

We find hb2 = (Qn'*Qn)^(-1)*Qn'*y;

Or, hb2 =


Now updated residue matrix, r2 = y – Qn* hb2

Or, r2=


Now we get the desired value in residue matrix r2 where all elements are zeros. So, beamspace matrix, hb will be


Here, we replace the elemental value of hb in that rows which are equal with the number of columns which generates maximum values with projection with y, then r1, and so on.

Now, from the mathematics we can say,

y = Q* hb

Or,



<< Back to Previous Page


Also read about

[1] 5G : Channel modelling for millimeter wave

[2] Time-delayed saleh valenzuala cluster model for UWB & mm-Wave

#beamforming

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Formula for BER: BER=Q(...

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

OFDM in MATLAB

  MATLAB Script % The code is written by SalimWireless.Com 1. Initialization clc; clear all; close all; 2. Generate Random Bits % Generate random bits numBits = 100; bits = randi([0, 1], 1, numBits); 3. Define Parameters % Define parameters numSubcarriers = 4; % Number of subcarriers numPilotSymbols = 3; % Number of pilot symbols cpLength = ceil(numBits / 4); % Length of cyclic prefix (one-fourth of the data length) 4. Add Cyclic Prefix % Add cyclic prefix dataWithCP = [bits(end - cpLength + 1:end), bits]; 5. Insert Pilot Symbols % Insert pilot symbols pilotSymbols = ones(1, numPilotSymbols); % Example pilot symbols (could be any pattern) dataWithPilots = [pilotSymbols, dataWithCP];   6. Perform OFDM Modulation (IFFT) % Perform OFDM modulation (IFFT) dataMatrix = reshape(dataWithPilots, numSubcarriers, []); ofdmSignal = ifft(dataMatrix, numSubcarriers); ofdmSignal = reshape(ofdmSignal, 1, []); 7. Display the Generated Data % Display the generated data disp("Original Bits:"); ...

Why is Time-bandwidth Product Important?

Time-Bandwidth Product (TBP) The time-bandwidth product (TBP) is defined as: TBP = Δ f ⋅ Δ t Δf (Bandwidth) : The frequency bandwidth of the signal, representing the range of frequencies over which the signal is spread. Δt (Time duration) : The duration for which the signal is significant, i.e., the time interval during which the signal is non-zero. The TBP is a measure of the "spread" of the signal in both time and frequency domains. A higher TBP means the signal is both spread over a larger time period and occupies a wider frequency range.     To calculate the period of a signal with finite bandwidth, Heisenberg’s uncertainty principle plays a vital role where the time-bandwidth product indicates the processing gain of the signal. We apply spread spectrum techniques in wireless communication for various reasons, such as interference resili...