Skip to main content

5G Channel Estimation using Orthogonal Matching Pursuit (OMP)



For millimeter wave massive MIMO communication in 5G, we observe that the number of available multipath that avails communication is much smaller than the maximum connections possible between the transmitter(TX) and receiver(RX). Only a few MPCs reach at receiver with good received signal strength. For example, the number of strong MPCs that reaches the receiver is L and there is N transmitter antenna on the transmitter side and N number of antennas on the receiver side.

So, from the channel matrix of the massive MIMO system, we can say the total number of available paths or connections between TX and RX is equal to, N X N or, N^(2)

Now, L << N^(2)

For simplicity, if the number of possible strong beams from the transmitter and receiver sides are NtBeams and NrBeams, then, L = NtBeams * NrBeams

If we look up the massive MIMO channel matrix, then, H=



Primarily, if the number of available MPCs to avail communication between TX and RX are much lesser than the maximum connections possible, N^(2), then the channel matrix will be sparse. Because MPCs other than stronger L number of paths are so weak that they cannot communicate between TX and RX.

Sparse channel matrix means where the elements are zeros. We have nothing to do with those elements at all. So, we need such an algorithm that can sense the zeros of the channel matrix and we can transmit our signal thru that selected first L number of stronger paths. The orthogonal matching Pursuit (OMP) algorithm helps us to do that. It can sense a sparse matrix. OMP is sometimes termed as the "Compressive Sensing Method".


Orthogonal Matching Pursuit Algorithm:

Let assume, NtBeams = NrBeams = 28

Total stronger connections or paths, L = 28 * 28 = 784 (it is observational)

Also assume, the number of antennas at both the transmitter and receiver side is equal to 32

So, the channel matrix contains 32 * 32 elements or 1024 elements

Now, the Equivalent sensing matrix, Q (say), will have an array dimension of 784 X 1024


Mathematically,

y = Qhb + n

Here, y = received vector

Q = Equivalent sensing matrix

hb = beamspace channel matrix where the number of elements is N X N = N^(2). It is a sparse matrix as there are only L-acceptable elements out of N^(2)

n = noise


Also assume, Matrix Q contains n number of columns, like that,

Q = [q1 q2 q3 ..... qn]

Now, we focus on finding out the maximum in the context of which column with a projectile with y generates maximum value, such that,

i(1) = argmax |(qjH / ||qj||)*y| where, j=1,2,...,n

Let's assume, qi1 column in Q matrix contributes maximum value. Then find out using the least square solution

min ||y - qi1*hb1|| (We try to make it zero)

Where, hb1 is any column of hb

Where, hb1= (qi1H * qi1)^(-1) * qi1H *y


Now, take a residue matrix as,

r1 = y - qi1*hb1

Now, we'll find the maximum correlation of residue matrix r1 by finding out which column of Q with a projectile with r1 generates maximum value, such that,

i(2) = argmax|(qjH / ||qj||)*r1| where, j=1,2,...,n

Let assume, qi2 column in Q generates the maximum value

Now form a matrix, Qn, like that,

Qn = [qi1 qi2]

Now find out hb2

hb2 = (QnH * Qn)^(-1) * QnH *y

Now update the residue matrix as,

r2 = y - Qn*hb2

If norm of ||r(n-1) - rn|| falls below a threshold value, then close the loop

In our case, if we consider r2-r1 falls below the threshold, then we close the loop.

If we find hb2=[3;2] then we do such operations in hb matrix, such that,

and if i(1) = 5 and i(2) = 2

Then hb will be [0;2;0;0;3;0; ... up to 28th row all are 0]

Here, we place the element value of hb2 in hb matrix in such row with row number matches with the value of i(1) and i(2)


Mathematical Example of Orthogonal Matching Pursuit (OMP):

Let's assume, for a MIMO communication system,

The size of the equivalent sensing matrix, Q is 4 X 6

And received signal matrix, y=




Now, y = Qhb

Or,

Where, hb =beamspace matrix =



Let assume, Q = [ q1 q2 q3 q4 q5 q6]

Here, q1 is the first column of Q, q2 is the second column of Q, and so on.


First Iteration of Orthogonal Matching Pursuit:

Now we find the maximum correlation of y by finding out which column in Q generates the maximum value with the projection of y,

Or,

QT*y =



Here, we can see the element in the 5th row is the maximum among all elements. So, we’ll select the 5th column of Q with which y has the maximum correlation value.

Now, hb1 = (q5'*q5)^(-1) * q5'*y

Where q5’ denotes the transpose of q5

Or,

hb1 = 4

Residue Matrix, r1 = y – q5* hb1

Or, r1 =


Here, we observe residual matrix r1 is not a zero matrix. So, we go for 2nd iteration.

Second Iteration of Orthogonal Matching Pursuit

Where we find the maximum correlation of r1 with respect to Q matrix.

Alternatively,

QT*r1=


Now, we see the element in the 2nd row of the above matrix generates the maximum value so r1 has a maximum correlation with the 2nd column of Q Matrix.

Now, we’ll form a new matrix, Qn = [q5 q2]

We find hb2 = (Qn'*Qn)^(-1)*Qn'*y;

Or, hb2 =


Now updated residue matrix, r2 = y – Qn* hb2

Or, r2=


Now we get the desired value in residue matrix r2 where all elements are zeros. So, beamspace matrix, hb will be


Here, we replace the elemental value of hb in that rows which are equal with the number of columns which generates maximum values with projection with y, then r1, and so on.

Now, from the mathematics we can say,

y = Q* hb

Or,



<< Back to Previous Page


Also read about

[1] 5G : Channel modelling for millimeter wave

[2] Time-delayed saleh valenzuala cluster model for UWB & mm-Wave

#beamforming

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿ“˜ Amplitude Shift Keying (ASK) ๐Ÿ“˜ Frequency Shift Keying (FSK) ๐Ÿ“˜ Phase Shift Keying (PSK) ๐Ÿ“˜ Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? ๐Ÿงฎ MATLAB Codes ๐Ÿ“˜ Simulator for binary ASK, FSK, and PSK Modulation ๐Ÿ“š Further Reading   ASK or OFF ON Keying Ask is a simple (less complex)  Digital Modulation Scheme  where we vary the  modulation  signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  t...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

๐Ÿ“˜ Overview ๐Ÿงฎ Multipath Components or MPCs ๐Ÿงฎ Excess Delay spread ๐Ÿงฎ Power delay Profile ๐Ÿงฎ RMS Delay Spread ๐Ÿงฎ Simulator for Calculating RMS Delay Spread ๐Ÿงฎ Why is there significant multipath in the case of very high frequencies? ๐Ÿงฎ Why RMS Delay Spread is essential for wireless communication? ๐Ÿงฎ Why the Power Delay Profile is essential? ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for calculating BER ๐Ÿงฎ MATLAB Codes for calculating theoretical BER ๐Ÿงฎ MATLAB Codes for calculating simulated BER ๐Ÿ“š Further Reading   BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is...