Skip to main content

What is Millimeter Wave (mm wave)? | Trends and Architecture


 

Millimeter Wave Bands Comes under Extremely High frequency Band (EHF) range as EHF ranges from 30 to 300 GHz.


Frequency range:

The millimeter wave band spans 30 to 300 GHz. 


What is the significance of its name?

Here in millimeter wave (mm wave) wavelength is very short. We know, 

wavelength = (1 / frequency)

As this frequency band spans from 30 GHz to 300 GHz

So, (1 / 30 GHz) = 10 millimeter &

      (1 / 300 GHz) = 1 millimeter

As wavelength ranges between 1 millimeter to 10 millimeter. So, it is called millimeter wave. 


Unfavorable bands in Millimeter wave band:

The 57-64 GHz millimeter wave range is easily absorbed by oxygen, while the 164-200 GHz spectrum is absorbed by vapor. 


Huge Spectrum Resource:

As we've already mentioned above that some frequencies in millimeter wave are not suitable for distant communication as they are absorbed by atmospheric gases, but there available bandwidth is still greater than 150 GHz. We can use these frequencies for feasible communication. 


High Path loss:

The millimeter wave band allows us to attain high data rates and meet high bandwidth demands, but it also has several drawbacks. Because the frequency is so high, there is a lot of path loss. We know that path loss grows at a square proportional rate in relation to operation frequency. As a result, we can simply deduce that the path loss will be significant. 



Severe Penetration Loss:

The wavelength of the millimeter wave band, on the other hand, is relatively tiny in the millimeter range (i.e., 1 millimeter to 10 millimeter). As a result, it has a hard time propagating through building walls or obstacles. The Line of Sight Communication (LOS) path might easily be blocked as a result of this. As a result, we rely on stronger Non Line of Sight (NLOS) pathways for such a high frequency band.


High Reflective and Refractive Properties:

Because of its higher frequency, this band has excellent reflecting and refractive properties. It is easily reflected / refracted by building walls and glasses, resulting in a greater number of multipath communication or MPCs between transmitter and receiver, but only a few MPCs are available for communication. The incidence and reflection angles are not the same in refraction. When an EM wave collides with an uneven plane, it typically reflects from that uneven plane in a variety of angles and directions.

When the wavelength is extremely short, it tends to be more refractive. Massive MIMO integration in the millimeter wave frequency, on the other hand, enables more efficient use of the huge spectrum available.


Why millimeter wave band is important for 5G communication

We are all aware that the number of internet-connected gadgets has surpassed 50 billion and is continually growing. And the number is rapidly increasing as the number of internet-connected IoT devices and sensors grows. Most countries are now using the sub-6 GHz band for 5G, although bandwidth congestion is expected in the near future. As we all know, bandwidth allocated for a specific service is limited, and the number of connected devices is continuously growing, we require more bandwidth to communicate with all connected devices in a seamless manner. In the near future, the millimeter wave band will meet the demand.    


Why mmwave communication more susceptible to noise?

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) 📘 Overview & Theory 📘 How does the channel impulse response affect the signal? 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ(...

Drone Detection via Low Complexity Zadoff-Chu Sequence Root Estimation

Summary Based on  Yeung, 2025:  Yeung, C.K.A., Lo, B.F. and Torborg, S. Drone detection via low complexity zadoff-chu sequence root estimation. In 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC) (pp. 1-4). IEEE, 2020, January.   The rise in drone usage—from agriculture and delivery to surveillance and racing—has introduced major privacy and security challenges. Modern drones often use OFDM (Orthogonal Frequency Division Multiplexing) with Zadoff-Chu (ZC) sequences for synchronization. While powerful, detecting these sequences blindly (without knowing their parameters) remains a challenge. Aim This article presents a low-complexity solution to blindly detect ZC sequences used by unknown drones. The approach uses a novel double differential method that works without large correlation banks, making it efficient and real-time capable. ZC Sequence Fundamentals A ZC sequence of prime length P and roo...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to add...

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ï„) dÏ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Understanding the Q...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...