Skip to main content

5G : Theoretical Aspects | Frequency & Spectrum, Speed, Massive MIMO & OFDM


 

5G technology is a brand-new technology that will supply us with data rates that are significantly faster than 4G. It works at frequencies below 6 GHz in many countries. But in future, 5G frequencies will range from 26 to 100 GHz (These frequencies will be used for the 5G backhaul connection, and the end user will connect to a local cell tower utilizing somewhat lower frequency bands, specifically the 1 to 7 GHz bands.). With a 1 millisecond latency, it can deliver multi-gigabit per second data speeds (over the air). The millimeter wave band is chosen for 5G technology. However, 5G is currently being deployed in a large number of countries (almost 60+). Because it operates at the EHF band and has very low on-the-air latency, 5G will lead automation in industries, internet connected vehicles for smooth traffic, tele-medicine, augmented reality (AR), and virtual reality (VR). Three key technologies that will enable 5G are millimeter wave spectrum, OFDM, and massive MIMO. One of the most prominent reasons for developing 5G technology is that the number of internet-connected devices is continually expanding. Due of its large available bandwidth, 5G can manage more devices connecting to the BS at the same time. It has the capacity to handle thousands of devices per square kilometer that are connected to the 5G network.

What's new in 5G Technology

1. Enhanced Mobile Broadband (EMBB)

Users of 4G receive about 10 megabits per second, whereas 5G users receive 100 megabits per second. 5G is predicted to have a peak data throughput of 10 GBits/s, compared to 1 GBit/s for 4G. 5G is expected to have ten times the connection density of 4G. In comparison to 4G, 5G is expected to require less power.

2. Infrastructure for 5G Technology

Because it is a new technology, the infrastructure, equipment, and so on will be considerably different from the current network. In 5G, the coverage zone under a cell will be relatively tiny Because higher frequencies may only travel a limited distance in the earth's atmosphere. Tiny cells are commonly

Also read about what is 5g RAN?
 
referred to as a microcell. Gases, vapor, and other substances in the atmosphere will absorb very high frequency waves. It also has a hard time penetrating thick obstacles because to the increased frequency. As a result, the microcell will be mostly coupled to user devices like PDAs. After that, the microcells will be linked to BS. Then one BS will be connected to another BS through backhaul.

Backhaul is a concept in which a free space LOS channel connects two high BS towers. Simply said, the line of sight path of two high BSs will be unobstructed. However, because the millimeter wave spectrum has more bandwidth, it can accommodate higher data rates. In backhaul communication, the use of wires and fiber optics is reduced. As a result, communication is completely wireless.

3. Dense connectivity and large network capacity

5G is planned to support a connection density up to 10^(6) per square kilometer, which is about ten times more than 4G. The important technologies that will boost the capacity of the 5G network are discussed below.

4. Interference in 5G Network

Interference is a concern since the number of internet-connected gadgets per square kilometer is in the thousands. As a result, it is necessary to eliminate interferences between devices in a very intelligent manner. Precoding in massive MIMO and beamforming will be quite beneficial in this situation.

Key Technologies to enable 5G Technology

1. Extremely high frequency & bandwidth

2. OFDM

3. Massive MIMO

1. Extremely high frequency & bandwidth

In general millimetre wave band is suitable for high data rate communication. Although some frequency band, like, 60 GHz band is easily absorbed by oxygen in atmosphere, but it a good plus for indoor communication.

In comparison to 30 - 60 GHz electromagnetic bands, oxygen in the environment absorbs 60 GHz frequency more. As a result, the 60 GHz millimeter wave band is typically appropriate for indoor communication. Indoor communication has a much shorter range than outdoor communication. Because 60 GHz attenuates significantly with distance, it rarely interacts with outdoor frequency bands. In 60 GHz indoor communication, however, device to device or D2D interference is less. So, it is a big plus for that.

2. OFDM

We've already written an article about OFDM. We covered how OFDM suppresses inter-symbol interferences. When it comes to frequency selective fading, OFDM offers an excellent resistance. It also improves spectrum efficiency.

3. How Massive MIMO increases data rate in 5G

Massive MIMO is critical for 5G communications. Let's pretend that there's simply one transmitter and one reception antenna. Between the transmitter and the receiver, there is only one communication path or data stream accessible. There are four simultaneous paths or data streams between the transmitter and receiver if 2*2 MIMO is used. However, you should be aware that there are two independent paths that a transmitter and receiver could take. Similarly, there are three antennas on the transmitter side and two antennas on the receiver side for 3*2 MIMO. The maximum number of simultaneous data streams between TX and RX is defined as.


Number of simultaneous data stream = min ( M, N)

where, M = number of antennas at transmitter side
N= number of antennas at receiver side

More examples:
If 4*4 MIMO or number of transmitter antenna (antenna element) equal to 4 and number of receiver side antenna = 4; then number is simultaneous data stream between transmitter and receiver is 4.
Similarly, for 5*6 MIMO, number of simultaneous data stream = 5
for 6*6 MIO, it is 6.

In a huge MIMO system, we can get independent eigen pathways using SVD. Signal processing becomes more simple as a result of these independent paths.

Full-duplex radio technology in 5G


In full duplex radio, transmit and receive in the same frequency bands at the same time. Unlike FDD and TDD, when both links use the entire bandwidth at the same time. As a result, self-interference is a critical challenge in full duplex transmission.

#Documentation of next-g wireless communication 5g technology
How many companies have developed multibeam backhaul or point to multipoint wireless products in E band frequency?
What are the handover authentication protocols used in 5g network?




People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

 Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence into an MSK-modulated signal % Inputs: % bits - Binary input sequence % carrierFreq - Carri...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add AWGN Noise Modulation Type BPSK BFSK ...

Fundamentals of Channel Estimation

Channel Estimation Techniques Channel Estimation is an auto-regressive process that may be performed with a number of iterations. There are commonly three types of channel estimation approaches. 1. Pilot estimation  2. Blind estimation  3. Semi-blind estimation. For Channel Estimation,  CIR [↗] is used. The amplitudes of the impulses decrease over time and are not correlated. For example, y(n) = h(n) * x(n) + w(n) where y(n) is the received signal, x(n) is the sent signal, and w(n) is the additive white gaussian noise At the next stage, h(n+1) = a*h(n) + w(n) The channel coefficient will be modified as stated above at the subsequent stage. The scaling factor "a" determines the impulse's amplitude, whereas "h(n+1)" represents the channel coefficient at the following stage. Pilot Estimation Method To understand how a communication medium is currently behaving, a channel estimate is necessary. In order to monitor a channel's behavior in practice communication ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

Constellation Diagram of FSK in Detail

  Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK) . Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel. Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'. Simulator for 2-FSK Constellation Diagram Simulator for 2-FSK Constellation Diagram SNR (dB): 15 Add AWGN Noise Run Simulation ...

Gaussian minimum shift keying (GMSK)

Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ï„) dÏ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a high-frequency carrier wave: s(t) = cos(2Ï€f c t + θ(t)) Here, f c is the carrier frequency, and s(t) represents the continuous-phase modulated carrier wave. Quadrature Modulation (Optional) ...