Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Filters Computer Networks

5G : Theoretical Aspects | Frequency & Spectrum, Speed, Massive MIMO & OFDM


 

5G technology is a brand-new technology that will supply us with data rates that are significantly faster than 4G. It works at frequencies below 6 GHz in many countries. But in future, 5G frequencies will range from 26 to 100 GHz (These frequencies will be used for the 5G backhaul connection, and the end user will connect to a local cell tower utilizing somewhat lower frequency bands, specifically the 1 to 7 GHz bands.). With a 1 millisecond latency, it can deliver multi-gigabit per second data speeds (over the air). The millimeter wave band is chosen for 5G technology. However, 5G is currently being deployed in a large number of countries (almost 60+). Because it operates at the EHF band and has very low on-the-air latency, 5G will lead automation in industries, internet connected vehicles for smooth traffic, tele-medicine, augmented reality (AR), and virtual reality (VR). Three key technologies that will enable 5G are millimeter wave spectrum, OFDM, and massive MIMO. One of the most prominent reasons for developing 5G technology is that the number of internet-connected devices is continually expanding. Due of its large available bandwidth, 5G can manage more devices connecting to the BS at the same time. It has the capacity to handle thousands of devices per square kilometer that are connected to the 5G network.

What's new in 5G Technology

1. Enhanced Mobile Broadband (EMBB)

Users of 4G receive about 10 megabits per second, whereas 5G users receive 100 megabits per second. 5G is predicted to have a peak data throughput of 10 GBits/s, compared to 1 GBit/s for 4G. 5G is expected to have ten times the connection density of 4G. In comparison to 4G, 5G is expected to require less power.

2. Infrastructure for 5G Technology

Because it is a new technology, the infrastructure, equipment, and so on will be considerably different from the current network. In 5G, the coverage zone under a cell will be relatively tiny Because higher frequencies may only travel a limited distance in the earth's atmosphere. Tiny cells are commonly

Also read about what is 5g RAN?
 
referred to as a microcell. Gases, vapor, and other substances in the atmosphere will absorb very high frequency waves. It also has a hard time penetrating thick obstacles because to the increased frequency. As a result, the microcell will be mostly coupled to user devices like PDAs. After that, the microcells will be linked to BS. Then one BS will be connected to another BS through backhaul.

Backhaul is a concept in which a free space LOS channel connects two high BS towers. Simply said, the line of sight path of two high BSs will be unobstructed. However, because the millimeter wave spectrum has more bandwidth, it can accommodate higher data rates. In backhaul communication, the use of wires and fiber optics is reduced. As a result, communication is completely wireless.

3. Dense connectivity and large network capacity

5G is planned to support a connection density up to 10^(6) per square kilometer, which is about ten times more than 4G. The important technologies that will boost the capacity of the 5G network are discussed below.

4. Interference in 5G Network

Interference is a concern since the number of internet-connected gadgets per square kilometer is in the thousands. As a result, it is necessary to eliminate interferences between devices in a very intelligent manner. Precoding in massive MIMO and beamforming will be quite beneficial in this situation.

Key Technologies to enable 5G Technology

1. Extremely high frequency & bandwidth

2. OFDM

3. Massive MIMO

1. Extremely high frequency & bandwidth

In general millimetre wave band is suitable for high data rate communication. Although some frequency band, like, 60 GHz band is easily absorbed by oxygen in atmosphere, but it a good plus for indoor communication.

In comparison to 30 - 60 GHz electromagnetic bands, oxygen in the environment absorbs 60 GHz frequency more. As a result, the 60 GHz millimeter wave band is typically appropriate for indoor communication. Indoor communication has a much shorter range than outdoor communication. Because 60 GHz attenuates significantly with distance, it rarely interacts with outdoor frequency bands. In 60 GHz indoor communication, however, device to device or D2D interference is less. So, it is a big plus for that.

2. OFDM

We've already written an article about OFDM. We covered how OFDM suppresses inter-symbol interferences. When it comes to frequency selective fading, OFDM offers an excellent resistance. It also improves spectrum efficiency.

3. How Massive MIMO increases data rate in 5G

Massive MIMO is critical for 5G communications. Let's pretend that there's simply one transmitter and one reception antenna. Between the transmitter and the receiver, there is only one communication path or data stream accessible. There are four simultaneous paths or data streams between the transmitter and receiver if 2*2 MIMO is used. However, you should be aware that there are two independent paths that a transmitter and receiver could take. Similarly, there are three antennas on the transmitter side and two antennas on the receiver side for 3*2 MIMO. The maximum number of simultaneous data streams between TX and RX is defined as.


Number of simultaneous data stream = min ( M, N)

where, M = number of antennas at transmitter side
N= number of antennas at receiver side

More examples:
If 4*4 MIMO or number of transmitter antenna (antenna element) equal to 4 and number of receiver side antenna = 4; then number is simultaneous data stream between transmitter and receiver is 4.
Similarly, for 5*6 MIMO, number of simultaneous data stream = 5
for 6*6 MIO, it is 6.

In a huge MIMO system, we can get independent eigen pathways using SVD. Signal processing becomes more simple as a result of these independent paths.

Full-duplex radio technology in 5G


In full duplex radio, transmit and receive in the same frequency bands at the same time. Unlike FDD and TDD, when both links use the entire bandwidth at the same time. As a result, self-interference is a critical challenge in full duplex transmission.

#Documentation of next-g wireless communication 5g technology
How many companies have developed multibeam backhaul or point to multipoint wireless products in E band frequency?
What are the handover authentication protocols used in 5g network?




People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK ASK or OFF ON Keying Ask is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  then it transmits no power. But the receiver is intelligent enough to deflect whether you've sent binary bit  "1"  or  "0

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2018] UGC Net Electronic Science Questions With Answer Key Download Pdf [July 2018] UG

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal to Noise Ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power is twice as

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between two signals or symbols. Figure 1: Constellation diagrams of ASK, PSK, and FSK The constellation points for ASK, PSK, and FSK [↗] are located in a different pattern, and the distances between the constellation points vary. According to the above diagram, the distance between ASK constellation points is (√Eb -0) = √Eb (where Eb stands for energy per bit). From the above figure, you can also see the distances between constellation points for PSK and FSK are 2√Eb and √(2Eb), respectively. In a constellation diagram, if the distance between signaling points is less, then the probability

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear all; close all; EbN0=-4:1:24; % Signal to Noise Ratio per Bit (in dB) EbN0ratio=10.^(EbN0/10); % Converted into ratio colors={'k-*','r-h','g-o','c-s','m-s','y-*','k-p','b:s','m:d','g:p'}; index=1; %BPSK BPSK_BER = 0.5*erfc(sqrt(EbN0ratio)); plotHandle=plot(EbN0,log10(BPSK_BER),char(colors(index))); set(plotHandle,'LineWidth',1.7); hold on; index=index+1; %M-PSK m=2:1:5; M=2.^m; for i=M, k=log2(i); PSK_BER = 1/k*erfc(sqrt(EbN0ratio*k)*sin(pi/i)); plotHandle=plot

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;