Skip to main content

1G to 5G Technology - Evolution of Wireless Generations


Cellular wireless evolution
Generation Frequency band PHY features Data rate Spectral Eff. (bps/Hz)
1G 850 MHz FDMA, FM N/A N/A
2G 900 MHz, 1.8 GHz TDMA/CDMA, GMSK/QPSK, FEC, PC 10 Kbps < 1
3G 1.8–2.5 GHz CDMA, QAM 1–40 Mbps 1–8
4G 2–8 GHz OFDMA, SC-FDMA, QAM, MIMO-OFDM 100–600 Mbps 15
5G 1–6 GHz
mm wave (26–28 GHz)
< 1 GHz (massive IoT)
visible light?
massive MIMO, beamforming
D2D, Full duplex, NOMA
LDPC and Polar codes
OFDM & variants (adapted to extremes?)
multi-Gbps several tens

Waveform design is the major change between the generations


Mobile Wireless Generations Specifications
 1G  Voice, Analog traffic, FDMA
 2G  Voice, SMS, CS data transfer, TDMA
 3G  Voice, SMS, PS data transfer, CDMA
 4G  PS data, VOIP, OFDMA
5G OFDMA, NOMA, Beamforming

 

1G

We've all heard about the evolution of G's, or, to put it another way, the evolution of wireless cellular networks from 1G to 5G. 1G (the first generation of wireless networks) was introduced in 1981. Only voice communication (by analog signals) was supported in 1G. It was able to handle a data rate of 2.4 kbps). There was no data communication. AMPS (Advanced mobile phone system), NMTS (nordic mobile phone system), TACS (total access communication system), etc. were the most popular 1G-access technologies at that time. 



2G

2G was launched in the mid-1990s, providing PSDN or data communication as well as voice communication. The predecessor technology, 1G, is also referred to as analog. However, on 2G, we were able to communicate via voice and data at 64 kbps. 2G was the first generation of telecommunications that provide internet browsing capabilities. However, the data rate was merely adequate for browsing. New variants of 2G were introduced, such as 2.5G, 2.75G, and so on. The issue with 2G was that it did not meet international standards. In the context of low data rate, higher handover latency, limited capacity of cells, data roaming, etc. - we see several issues in 2G. GSM (global system for mobile communication), CDMA (code division multiple access), IS-95, etc. were the popular 2G access technologies at that time.


2G Modulation Techniques:

Frequency division multiplexing (FDM) and time division multiplexing (FDM) modulation techniques were primarily used in 2G. 2G distributes the entire available frequency spectrum into multiple subbands using FDM. Then, to link many devices, TDM is used for each subband. read more ...


Frequency bands for 2G:

GSM stands for Global System for Mobile Communications. The operating frequency ranged from 900 to 1800 MHz. We've probably all heard about uplink and downlink in 2G or other networks. The frequency band utilized to transfer signals from a mobile station (MS) to a base station is referred to as the uplink frequency (BS). Downlink frequency refers to the frequency utilized to convey data or signals from the BS to the MS.


Bandwidth:

Each channel in 2G has a bandwidth of 200 kHz and is modulated using TDM. We know that we can connect multiple MSs to a single channel using this technique. Using TDM, 2G GSM can connect 8 users simultaneously over a single channel.


The cell coverage of 2G GSM:

Previously, there was the idea of a big cell tower that could transmit its signal over a large area. You can assume that a tall transmitter is located in the center of a city and that it covers the entire area. For example, in 1946, the wireless mobile signal was sent in this manner in New York City. Only 543 users could be added to the network. We couldn't reuse the frequency with that technology.  However, as time went on, the number of users grew rapidly. Then there was the cellular (cellular network) concept. In a cellular 2G GSM network, we can reuse frequencies in cell towers when they are not too close or when interference is minimal. This allowed us a lot of flexibility in terms of connecting multiple devices at once.


Doppler Shift:

In a 2G network, Doppler shift is an inevitable parameter. When MSs travel closer to the BS or cell tower, the received frequency increases. When MSs move away from cell towers, on the other hand, the frequency of received signals decreases. It can be stated mathematically as a Doppler shift, 

It can be stated mathematically as a Doppler shift, 

fD = (v/lambda) * cos(theta), 

where v is the user's velocity and lambda is the operating frequency's wavelength. And theta = angle between BS and MS (theta)

read more ...



3G

The 3G connection became accessible later in 2001. 3G was the first wireless upgrade to bring online multimedia, video conferencing, and other features to the market. A 3G connection proved sufficient for internet video streaming. The main motivation behind 3G technology was to overcome the bandwidth limitation of 2G. WCDMA, CDMA2000, UMTS, etc. were the most popular 3G access technologies at that time. Primarily, 3G was able to handle a data transfer rate of 3.5 Mbps. Later on, we see different extensions of the third-generation network, like, HSDPA, HSUPA, HSPA+, etc. 



4G

In 4G, we observe data speeds of 30-40 Mbps that are satisfactory. However, the number of internet-connected devices is growing every day. 4G was designed to handle a data transfer rate of 300Mbps along with QoS (quality of service). According to Cisco, there will be 50 billion gadgets linked to the internet worldwide by 2020.

As a result, more bandwidth is required to connect more devices to the BS at the same time, and the need for high data rates is increasing. We are now accustomed to learning from video rather than text, such as high-definition video streaming, video conferencing, and so on. These applications necessitate a high data transfer rate.

4G is currently experiencing bandwidth congestion. The amount of data traffic generated by various wireless devices is increasing every day. So, either modern 4G is incapable of managing it, or the bandwidth of recent 4G LTE is insufficient to connect all devices to the internet at the same time. More bandwidth is required. 5G can help us with this.



5G

5G will, as we well know, operate at incredibly high frequencies ranging from sub 6 GHz band to millimeter wave band (26 to 100 GHz). It has a large spectrum of resources. Extremely high frequencies, massive MIMO, and beamforming are crucial 5G technologies that will address future telecom network needs or demands. Read More about 5G in detail...

That are also key technologies for 6G, and beyond. Sub-terahertz frequencies are expected to be used for 6G.


Also read about

[1] Wireless Communication Projects/Thesis Ideas

Q. What type of multiplexing is widely used in the second-generation (2g and third-generation (3g wireless communication?

A. TDM, FDM, CDMA, WCDMA

Q. What is the typical power range of an LTE signal received on a mobile device?

A. The typical range of received LTE signal's average power is between -44 dBm (excellent) to -140 dBm (bad).

#how cellular communication is different from radio communication? 

What is the communication method that uses symbolic codes for data transmission?

A. Telegraphy. It uses Morse code.

Short note on the evolution of wireless generation of 1g 2g 3g 4g 5g

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

LDPC Encoding and Decoding Techniques

📘 Overview & Theory 🧮 LDPC Encoding Techniques 🧮 LDPC Decoding Techniques 📚 Further Reading 'LDPC' is the abbreviation for 'low density parity check'. LDPC code H matrix contains very few amount of 1's and mostly zeroes. LDPC codes are error correcting code. Using LDPC codes, channel capacities that are close to the theoretical Shannon limit can be achieved.  Low density parity check (LDPC) codes are linear error-correcting block code suitable for error correction in a large block sizes transmitted via very noisy channel. Applications requiring highly reliable information transport over bandwidth restrictions in the presence of noise are increasingly using LDPC codes. 1. LDPC Encoding Technique The proper form of H matrix is derived from the given matrix by doing multiple row operations as shown above. In the above, H is parity check matrix and G is generator matrix. If you consider matrix H as [-P' | I] then matrix G will be...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

What is a Chirp Signal?

📘 Overview & Theory 🧮 MATLAB Code 📚 Further Reading   Chirp signals are often used to find target objects. In a chirp signal, the frequency varies with time. For up-chirp signals, frequency increases with time. Oppositely, for down-chirp signals, the frequency decreases with time. Advantages of a chirp signal over a single-toned signal Better resolution Better Security The wide bandwidth of a chirp signal allows for capturing more detailed info about the target or object In a chirp signal, pulse compression enhances resolution by concentrating the signal energy into a shorter duration of time It is less susceptible to noise  It improves signal to noise ratio Up-Chirp Signal A sinusoidal up-chirp signal is denoted as Where A is the amplitude of this signal             f0 is the starting frequency of the chirp at t=0             Î± is the chirp rate or the rate at which the frequency incre...

What are the main lobe and side lobes in Beamforming

    What are the main lobe and side lobes in Beamforming? You've probably noticed that in the diagram of  beamforming , there are two types of lobes in beamforming patterns. One is the main lobe, while the others are side lobes. We intend to communicate with receivers with a stronger directional path from the transmitter when we produce beams for wireless communication. We can also see side lobes in this scenario. These side lobes, on the other hand, are not necessary for effective communication. As a result, we take various procedures to remove those side lobes or to reduce the number of side lobes as much as feasible; otherwise, inter-symbol interference  occurs, and signal quality suffers. Figure: Illustration of Main Lobe and Side lobes, where the x-axis denotes the angle of arrival (AOA) and angle of departure (AOD), respectively, while, the y-axis denotes the gain/power in dB (decibel).     In the case of MIMO antennas, our major goal is to reduce int...