Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

5G: Spectral Bands, Speed, and Other Factors



Lower carrier frequencies (< 6 GHz) are unable reliable signal propagation for 5G. However, only limited spectral bands are available in the sub-6 GHz spectrum. Only those frequencies are inadequate to meet the relentless increase in data rates in 5G wireless networks. So, what is the solution here? Exploration of the unused, high-frequency mm-wave band could be a good choice, ranging from 6 to 300 GHz. 
Mm-wave standards are already defined for indoor wireless personal area networks (WPAN) - IEEE 802.15.3c and wireless local area networks (WLAN) - IEEE 802.11.ad.


Which countries have 5G now, and what frequency bands are they using?

5G is now available in many countries. China and the United States are at the top of the list. Brand new 5G technology benefits approximately 356 cities in China and approximately 296 cities in the United States. Other countries that have already implemented 5G include the Philippines, South Korea, Canada, Spain, Italy, Germany, the United Kingdom, Saudi Arabia, and others.

In general, 5G currently employs three types of frequency bands. The first is frequency of less than 6 GHz or Sub-6 GHz band. Other frequency bands are in the millimeter wave range. It will also use low 5G bands, such as 600 MHz00 MHz, to improve coverage, particularly in rural areas.

For 5G communication, China, for example, uses frequencies ranging from 600 MHz to 4700 MHz. The frequencies in the United States range from 600 MHz to 4200 MHz. These bands are intended for end-user use. You may have heard that telecom companies also purchase high remedy frequency (i.e., millimeter wave) spectrum for 5G deployment. However, those extremely high frequencies are appropriate for 5G backhaul connections.

The current 5G frequency bands can be classified into three categories.

The Low Band (Usually ranges from 600 to 900 MHz, and they are suitable for rural deployment of 5G where signals need to traverse long distances from cell towers)
The Middle Band (Frequency ranges from 1 to 7 GHz)
The High Band (These are millimeter wave bands. They range from 24 to 48 GHz)


Current Speed of 5G:

The average 5G speed is 100 Mbps, which means that 5G users will receive 100 megabits per second. Depending on the coverage, number of users available per channel (5G communication channel), and other factors, the pick data throughput rate can range from 1 Gbps to 10 Gbps.

Recently, it was claimed that a 5G network could achieve 5 Gbps throughput using a 28 GHz band and 800 MHz bandwidth with carrier aggregation.


Millimeter wave applications in 5G:

We know that companies own millimeter wave spectrums in 5G auctions. In fact, we want to use such extremely high-frequency bands for ultra-high data rates and ultra-low latency in 5G deployment. These are critical for any network to lead automation in various sectors such as industry (machine-to-machine communication, for example), telemedicine, augmented reality (AR), virtual reality (VR), and so on.

However, those mm-wave bands are appropriate for backhaul connections in which two high 5G towers communicate via LOan S (line of sight) path and deliver very high data rates from large cell towers to nearby small cell towers or access points (APs). End users can connect to the internet via a nearby cell tower.


Also, Read About
[1] 5G Theoretical Aspects | Frequency and Spectrum, Speed, Massive MIMO & OFDM
# News about 5G

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in an AWGN channel is g

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

RMS Delay Spread, Excess Delay Spread and Multi-path ...

Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direct communication link between TX and RX. The other communication pathways are called non-line of sight (NLOS) paths. Reflection and refraction of transmitted signals with building walls, foliage, and other objects create NLOS paths. [ Read More about LOS and NLOS Paths] Multipath Components or MPCs: The linear nature of the multipath component signals is evident. This signifies that one multipath component signal is a scalar multiple of

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = hx + n ... (i) The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading. 2. Additive White Gaussian Noise (AWGN) The mathematical effect involves adding Gauss

FFT Magnitude and Phase Spectrum using MATLAB

  MATLAB Code  % Developed by SalimWireless.Com clc; clear; close all; % Configuration parameters fs = 10000; % Sampling rate (Hz) t = 0:1/fs:1-1/fs; % Time vector creation % Signal definition x = sin(2 * pi * 100 * t) + cos(2 * pi * 1000 * t); % Calculate the Fourier Transform y = fft(x); z = fftshift(y); % Create frequency vector ly = length(y); f = (-ly/2:ly/2-1) / ly * fs; % Calculate phase while avoiding numerical precision issues tol = 1e-6; % Tolerance threshold for zeroing small values z(abs(z) < tol) = 0; phase = angle(z); % Plot the original Signal figure; subplot(3, 1, 1); plot(t, x, 'b'); xlabel('Time (s)'); ylabel('|y|'); title('Original Messge Signal'); grid on; % Plot the magnitude of the Fourier Transform subplot(3, 1, 2); stem(f, abs(z), 'b'); xlabel('Frequency (Hz)'); ylabel('|y|'); title('Magnitude of the Fourier Transform'); grid on; % Plot the phase of the Fourier Transform subplot(3, 1, 3); stem(f,

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

   Compare the BER performance of QPSK with other modulation schemes (e.g.,  BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc) under similar conditions. MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));     hold on; end % Set parameters for QPSK EbNoVec_qpsk = (-20:20)'; % Eb/No range for QPSK SNRlin_qpsk = 10.^(EbNoVec_qpsk/10); % SNR linear values for QPSK % Calculate the theoretical BER for QPSK using the provided formula ber_qpsk_theo = 2*qfunc(sqrt(2*SNRlin_qpsk)); % Plot the results for QPSK semilogy(EbNoVec_qpsk, ber_qpsk_theo, 's-', &#

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ( t) is calculated. As a result, all frequencies are responded to equally by  δ (t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all freq