Skip to main content

Massive MIMO for 5G | SVD, Multiplexing, Rank and Condition Number

 

Today, we'll talk about the importance of large MIMO in modern 5G communication systems. We are aware that the MIMO technology has been used in the past for 4G LTE. Massive MIMO has a number of advantages over traditional MIMO systems. Now I'll go over some of the basic benefits of a basic MIMO setup against a single transmitter and receiver antenna. 1. MIMO is a technology that allows for spatial multiplexing; 2. We can transmit the same signal from numerous antennas in a MIMO system for better signal correlation; 3. Allows for space, frequency, and time diversion.


Singular Value Decomposition (SVD): 

Go through the process of singular value decomposition (SVD)

H = U∑VH  

Mathematically, SVD denotes: 

Here in massive MIMO, we basically factorize the channel matrix, 


where, U and V are unitary matix
             = diagonal eigen value matrix


The values of the unitary matrices U and V are arranged in such a way that the eigen values of the matrix ∑ are in decreasing order. SVD aids in the optimal allocation of power to each Eigen value. It also has something to do with spatial multiplexing. In an upcoming essay, we'll go over SVD in greater depth.


Spatial Multiplexing (SM):

Spatial multiplexing allows us to deliver multiple data streams to the transmitter and receiver at the same time. The number of simultaneous and independent data streams between TX and RX is determined by the eigen values in eigen matrix ∑ above. The number of simultaneous data streams is determined by the rank of a wireless communication channel matrix when channel matrix, H is sparse. In MIMO communication, capacity of system is proportional to the number of antenna elements and the signal to noise ratio, or SNR.


Signal Correlation at receiver side:

Now I'll talk about how we can go from simple MIMO to massive MIMO for 5G connectivity. We already know that increasing the antenna array size in MIMO improves spectral efficiency. When the number of antenna elements in a huge MIMO system is increased, however, the signal correlation at the receiver side improves. It basically focuses the resulting strong signal (which is formed by the same signal delivered by many closely spaced antenna elements) in a single direction.


Massive MIMO communication – Uplink and Downlink

Users directly transmit their symbols via the large MIMO UL link / processing. To reduce interference in one's transmitted symbol from symbols of other users, BS must recover each individual's symbol using basic linear decoding. We employ a pre-coding (beam forming) technique for downlink or DL communication to cancel interferences between users using correct baseband and RF pre-coding and a combining (or weighting) matrix.


Rank and Condition number of a massive MIMO channel matrix while using with millimeter wave band 

The number of independent rows or columns in a matrix determines its rank. When we determine the rank of a channel matrix, we may determine how many independent data streams are possible between the TX and RX MIMO antennas. In most circumstances, the rank of a channel matrix in massive MIMO is very small, especially when operating at extremely high frequencies, such as the millimetre wave band. As a result, it generates a sparse channel matrix.

The condition number is a statistic used to characterise the quality of MIMO channels in wireless communications. It is defined as the ratio of the greatest to lowest singular value in the singular value decomposition of a matrix. In MIMO, a low condition number (below 20 dB) usually indicates good orthogonality between sub-channels. However, the condition number is substantially worse here during extremely high frequency operation. As a result, we employ beamforming to overcome the aforementioned constraints. 

#beamforming

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

https://www.salimwireless.com/2024/11/constellation-diagram-in-matlab.html 📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Simulator for ASK, FSK, and PSK Generation 🧮 Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rat...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory 🧮 MATLAB Codes 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 📚 Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams ...

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) 📘 Overview & Theory 📘 How does the channel impulse response affect the signal? 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ(...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need...

Online Simulator for Constellation Diagram of M-ary PSK

Constellation Diagram of M-ary PSK Bitstream (e.g. 1,0,1,1): Generate Message Modulation Order (M): M must be a power of 2 (e.g., 2, 4, 8, 16) Plot Constellation Diagram Explore Signal Processing Simulations Further Reading   Online Simulator for M-ary PSK Online Simulator for ASK, FSK, and PSK   Explore DSP Simulations