Skip to main content

Massive MIMO for 5G | SVD, Multiplexing, Rank and Condition Number

 

Today, we'll talk about the importance of large MIMO in modern 5G communication systems. We are aware that the MIMO technology has been used in the past for 4G LTE. Massive MIMO has a number of advantages over traditional MIMO systems. Now I'll go over some of the basic benefits of a basic MIMO setup against a single transmitter and receiver antenna. 1. MIMO is a technology that allows for spatial multiplexing; 2. We can transmit the same signal from numerous antennas in a MIMO system for better signal correlation; 3. Allows for space, frequency, and time diversion.


Singular Value Decomposition (SVD): 

Go through the process of singular value decomposition (SVD)

H = U∑VH  

Mathematically, SVD denotes: 

Here in massive MIMO, we basically factorize the channel matrix, 


where, U and V are unitary matix
             = diagonal eigen value matrix


The values of the unitary matrices U and V are arranged in such a way that the eigen values of the matrix ∑ are in decreasing order. SVD aids in the optimal allocation of power to each Eigen value. It also has something to do with spatial multiplexing. In an upcoming essay, we'll go over SVD in greater depth.


Spatial Multiplexing (SM):

Spatial multiplexing allows us to deliver multiple data streams to the transmitter and receiver at the same time. The number of simultaneous and independent data streams between TX and RX is determined by the eigen values in eigen matrix ∑ above. The number of simultaneous data streams is determined by the rank of a wireless communication channel matrix when channel matrix, H is sparse. In MIMO communication, capacity of system is proportional to the number of antenna elements and the signal to noise ratio, or SNR.


Signal Correlation at receiver side:

Now I'll talk about how we can go from simple MIMO to massive MIMO for 5G connectivity. We already know that increasing the antenna array size in MIMO improves spectral efficiency. When the number of antenna elements in a huge MIMO system is increased, however, the signal correlation at the receiver side improves. It basically focuses the resulting strong signal (which is formed by the same signal delivered by many closely spaced antenna elements) in a single direction.


Massive MIMO communication – Uplink and Downlink

Users directly transmit their symbols via the large MIMO UL link / processing. To reduce interference in one's transmitted symbol from symbols of other users, BS must recover each individual's symbol using basic linear decoding. We employ a pre-coding (beam forming) technique for downlink or DL communication to cancel interferences between users using correct baseband and RF pre-coding and a combining (or weighting) matrix.


Rank and Condition number of a massive MIMO channel matrix while using with millimeter wave band 

The number of independent rows or columns in a matrix determines its rank. When we determine the rank of a channel matrix, we may determine how many independent data streams are possible between the TX and RX MIMO antennas. In most circumstances, the rank of a channel matrix in massive MIMO is very small, especially when operating at extremely high frequencies, such as the millimetre wave band. As a result, it generates a sparse channel matrix.

The condition number is a statistic used to characterise the quality of MIMO channels in wireless communications. It is defined as the ratio of the greatest to lowest singular value in the singular value decomposition of a matrix. In MIMO, a low condition number (below 20 dB) usually indicates good orthogonality between sub-channels. However, the condition number is substantially worse here during extremely high frequency operation. As a result, we employ beamforming to overcome the aforementioned constraints. 

#beamforming

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

๐Ÿ“˜ Overview ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Theory ๐Ÿงฎ Simulator for MSK ๐Ÿ“š Further Reading  Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence in...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

MATLAB Code for BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

๐Ÿ“˜ Overview ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Theory ๐Ÿงฎ Are QPSK and 4-PSK same? ๐Ÿ“š Further Reading   QPSK offers double the data rate of BPSK while maintaining a similar bit error rate at low SNR when Gray coding is used. It shares spectral efficiency with 4-QAM and can outperform 4-QAM or 16-QAM in very noisy channels. QPSK is widely used in practical wireless systems, often alongside QAM in adaptive modulation schemes [Read more...]   MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));  ...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

Differences between Baseband and Passband Modulation Techniques

๐Ÿ“˜ Overview ๐Ÿงฎ Difference betwen baseband and passband ๐Ÿงฎ Baseband modulation techniques ๐Ÿงฎ Passband modulation techniques ๐Ÿ“š Further Reading   1. Frequency Translation Baseband Modulation: The signal occupies the lower end of the frequency spectrum, close to DC (0 Hz). Noise at these frequencies (such as 1/f noise or flicker noise) can significantly impact the signal.  Passband Modulation: The signal is shifted to a higher frequency range by modulating it with a carrier frequency. This translation can help to avoid low-frequency noise and interference, which are often more prevalent and stronger in the baseband. 2. Bandpass Filtering Baseband Modulation: The filtering of baseband signals is often limited by the need to preserve the low-frequency components of the signal. This makes it difficult to filter out low-frequency noise effectively. Passband Modulation: The modulated signal can be passed through a bandpass filter centered around t...

Theoretical BER vs SNR for binary ASK and FSK

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Theoretical Ber vs SNR for Amplitude Shift Keying (ASK) The theoretical bit error rate (BER) for binary Amplitude Shift Keying (ASK) as a function of the signal-to-noise ratio (SNR) can be derived using the following expression: If we map the binary signals to 1 and -1 in ASK , the probability of bit error will be: BER = Q(√(2*SNR))   If we map the binary signals to 0 and 1 in ASK , the probability of bit error will be:    BER = Q(√(SNR/2))   Where: Q(x) is the Q-function, which is the tail probability of the standard normal distribution. SNR is the signal-to-noise ratio. N0 is the noise power spectral density. Where Q is the Q function In mathematics Q(x) = 0.5 * erfc(x/ √ 2)   Calculate the Probability of Error using Q-function for ASK: For ASK with amplitudes 0 and 1 : When bit '0' is transmitted, the received signal is noise only . When bit '1' is transmitted, the re...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); sub...