Skip to main content

What is the process of beamforming in MIMO / Massive MIMO systems?



Beamforming is a technology that has been around for years. Beamforming is a technique for focusing a signal in a specific direction to be received at maximum gain at the receiver side. Because signal transmission from the transmitter to the receiver is directional, the receiver receives a greater signal in this process. When we send a signal from the transmitter to the receiver, the transmitter antenna spreads the signal out in an omnidirectional pattern. It'll be much easier if you've observed an antenna's radiation pattern. Using a directional beam, you can think of beamforming as directional communication between a transmitter and receiver.

More than one antenna element is required to form a beam. They will, of course, be closely spaced for proper beam forming. The resultant phase of the signals will be fixed when we send signals from multiple nearby antennas. Simply put, directional communication is possible because the signal transmission on one side is stronger than on the other, as opposed to omnidirectional transmission.


1. Beamforming in MIMO:

We can use a MIMO system or a Massive MIMO system for better beam formation. Antennas (antenna elements) are close together here. Antenna elements are typically spaced at half-wavelength intervals. When we transmit the same signal from several antennas in a multiple input multiple output (MIMO) system, it generates a beam to the receiver in a specific direction, allowing the receiver to receive a stronger signal. It also boosts the signal-to-noise ratio (SNR) at the receiver end.
On the other hand, spatial multiplexing is one of the most essential characteristics of MIMO systems. As a result, we can send multiple data streams to the transmitter and receiver at the same time. As a result, we will be able to reach higher data rates. It will be easier to understand if you use an example. Assume there is only one transmitter and receiver antenna, and they communicate at a data rate of 150 kbps. There are numerous simultaneous data streams between the transmitter and receiver if there are multiple antennas on the transmitter and receiver sides or if MIMO antennas are available. There are two data streams available at the same time between the transmitter and the receiver. Then the communication speed between them will be two times faster than before. Then it'll be around 300 kbps.

When more antenna elements are close together, we can produce a more powerful narrow beam. There are hundreds of antenna elements in large MIMO. As a result, we can use massive MIMO to create a narrower beam. Conversely, if we broadcast signal bits at higher frequencies, we can also obtain a smaller beam. For example, in the case of 60 GHz communication rather than 28 GHz extremely high frequency (EHF) communication, we can produce a narrower beam utilizing the same size MIMO antenna.


Figure: A hybrid beamforming example using a 64 x 16 MIMO system and 4 RF chains functioning at both TX and RX at 28 GHz


2. Various Types of Beamforming in MIMO:

During the beamforming process, some issues may develop. Internal interference between multiple data streams transmitted from many antennas in a MIMO system between transmitter and receiver can be a big issue. As a result, we'll need to use a pre-coding strategy to eliminate interference between many data streams. There are various techniques for pre-coding. We'll talk about it later.

Analog, digital, and hybrid beamforming are the main examples of beamforming techniques. Beam steering is used for analog beam forming. Digital beam forming can regulate a signal's amplitude and phase, whereas analog beam forming can only adjust the phase. Hybrid beam formation is comparable to digital beamforming. However, it is less complicated. As a result, in the case of massive MIMO communication, it is a cost-effective and widely accepted technology.

# mimo beamforming  # analog beamforming

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

๐Ÿ“˜ Overview ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Theory ๐Ÿงฎ Simulator for MSK ๐Ÿ“š Further Reading  Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence in...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

MATLAB Code for BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

๐Ÿ“˜ Overview ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Theory ๐Ÿงฎ Are QPSK and 4-PSK same? ๐Ÿ“š Further Reading   QPSK offers double the data rate of BPSK while maintaining a similar bit error rate at low SNR when Gray coding is used. It shares spectral efficiency with 4-QAM and can outperform 4-QAM or 16-QAM in very noisy channels. QPSK is widely used in practical wireless systems, often alongside QAM in adaptive modulation schemes [Read more...]   MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));  ...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

Differences between Baseband and Passband Modulation Techniques

๐Ÿ“˜ Overview ๐Ÿงฎ Difference betwen baseband and passband ๐Ÿงฎ Baseband modulation techniques ๐Ÿงฎ Passband modulation techniques ๐Ÿ“š Further Reading   1. Frequency Translation Baseband Modulation: The signal occupies the lower end of the frequency spectrum, close to DC (0 Hz). Noise at these frequencies (such as 1/f noise or flicker noise) can significantly impact the signal.  Passband Modulation: The signal is shifted to a higher frequency range by modulating it with a carrier frequency. This translation can help to avoid low-frequency noise and interference, which are often more prevalent and stronger in the baseband. 2. Bandpass Filtering Baseband Modulation: The filtering of baseband signals is often limited by the need to preserve the low-frequency components of the signal. This makes it difficult to filter out low-frequency noise effectively. Passband Modulation: The modulated signal can be passed through a bandpass filter centered around t...

Theoretical BER vs SNR for binary ASK and FSK

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Theoretical Ber vs SNR for Amplitude Shift Keying (ASK) The theoretical bit error rate (BER) for binary Amplitude Shift Keying (ASK) as a function of the signal-to-noise ratio (SNR) can be derived using the following expression: If we map the binary signals to 1 and -1 in ASK , the probability of bit error will be: BER = Q(√(2*SNR))   If we map the binary signals to 0 and 1 in ASK , the probability of bit error will be:    BER = Q(√(SNR/2))   Where: Q(x) is the Q-function, which is the tail probability of the standard normal distribution. SNR is the signal-to-noise ratio. N0 is the noise power spectral density. Where Q is the Q function In mathematics Q(x) = 0.5 * erfc(x/ √ 2)   Calculate the Probability of Error using Q-function for ASK: For ASK with amplitudes 0 and 1 : When bit '0' is transmitted, the received signal is noise only . When bit '1' is transmitted, the re...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); sub...