Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Hybrid Beamforming | Page 1



Hybrid Beamforming:

Hybrid beam formation was developed to address some of the limitations of digital pre-coding approaches. Every antenna element is connected to an RF chain in digital pre-coding (beam forming) method. We also know that each RF chain is in charge of providing a separate data stream between the transmitter and the receiver. We know that a larger number of independent data streams leads to higher data rates. It has a spatial multiplexing feature for MIMO. As a result, we may assume that switching from MIMO to massive MIMO will benefit us more in terms of spatial multiplexing in massive MIMO, where each antenna is coupled to a single RF chain. We'll proceed with a definition of hybrid beam forming.


Overview of hybrid beam forming with example:

Unlike digital beam forming, more than one antenna element is connected to a single RF chain in hybrid pre-coder (beam forming). Let me give you an example to help you understand. Let's assume there are 64 antenna elements in a MIMO system and we're only using four RF chains. A single RF chain is used to connect 16 antenna elements. The hybrid pre coder can be divided into two parts at this point. Because 16 antennas are joined to a single RF chain, the signal is sent by all 16 antenna elements. As a result, it can produce a beam and maximize SNR at the receiver. We may, on the other hand, guide the beam in a variety of ways. This is a characteristic of analog pre-coders (beam forming).



Fig: Hybrid Beamforming


Similarly, we can use a digital pre-coding technique to cancel interference across four existing RF networks. As a result, we can define hybrid pre-coding as a strategy that combines a lower-dimensional digital pre-coder with a big array size. The huge array is utilized to boost correlation gain at the receiver side and to remove interference between simultaneous data streams using a digital pre-coder.


Why hybrid beam forming is suitable for massive MIMO system?

Now we'll talk about why we're switching from MIMO to huge MIMO technology and why we're employing hybrid pre-coding. The first reason is that if each antenna element continues to use a single RF chain, signal processing on the reception side will become extremely complex.

Massive MIMO uses hundreds of antenna elements that are put very close together. As a result, there's a danger that antenna elements will be burned. Second, for smaller dimensional MIMO, such as 2 X 2, 3 X 3 MIMO, digital pre-coding is fine. This is also useful for MIMO point-to-point transmission.

However, if the size of MIMO grows larger, such as beyond 8 x 8 MIMO, point-to-point communication becomes less scalable. In the context of signal processing at the receiver, it becomes more complicated. On the other hand, increasing the antenna array size results in better signal correlation at the receiver side, which helps to battle high path-loss, particularly when employing a very high frequency band, such as the millimeter wave band.

Signals in the higher frequency spectrum are reflected and refracted several times. As a result, receiving LOS (Line of Sight) between transmitter and receiver is extremely challenging. Point-to-point communication is not a smart concept in this situation. As a result, we adopt a hybrid pre-coding technique with fewer RF chains and a big array antenna (in the analogue pre-coder component) to boost gain even further. As a result, the hybrid pre-coding technique is both cost-effective and simple. We attain the same degree of performance in hybrid pre-coding as we do in digital pre-coding.



MATLAB is a powerful mathematical tool that assists students, engineers, and scientists in implementing mathematics in complicated systems and producing understandable graphs and graphics. Now, using MATLAB, we will compare different types of beamforming, such as analogue beamforming, digital beamforming, and hybrid beamforming.

Assume you have a MIMO system with 64 antenna elements on the transmitter and 16 antenna elements on the receiver.

MATLAB Script:

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Rayleigh vs Rician Fading

  In Rayleigh fading, the channel coefficients tend to have a Rayleigh distribution, which is characterized by a random phase and magnitude with an exponential distribution. This means the magnitude of the channel coefficient follows an exponential distribution with a mean of 1. In Rician fading, there is a dominant line-of-sight component in addition to the scattered components. The channel coefficients in Rician fading can indeed tend towards 1, especially when the line-of-sight component is strong. When the line-of-sight component dominates, the Rician fading channel behaves more deterministically, and the channel coefficients may tend towards the value of the line-of-sight component, which could be close to 1.   MATLAB Script clc; clear all; close all; % Define parameters numSamples = 1000; % Number of samples K_factor = 5; % K-factor for Rician fading SNR_dB = 20; % Signal-to-noise ratio (in dB) % Generate complex Gaussian random variable for Rayleigh fading channel h_rayleigh = (

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1]

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK FSK PSK Baud Rate (Hz):

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t

Simulation of ASK, FSK, and PSK using MATLAB Simulink

ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying both modulated and unmodulated signals at the same time. The result section shows that binary '1' is modulated by a certain sine wave amplitude of 1 Volt, and binary '0' is modulated by zero amplitude. Simulation of Frequency Shift Keying (FSK) using MATLAB Simulink   Result The diagram above shows t

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ( t) is calculated. As a result, all frequencies are responded to equally by  δ (t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all freq

How to use MATLAB Simulink

  MATLAB Simulink is a popular add-on of MATLAB. Here, you can use different blocks like modulator, demodulator, AWGN channel, etc. And you can do experiments on your own.       Steps Go to the 'Simulink' tab at the top navbar of MATLAB. If not found, click on the add-on tab, search 'Simulink,' and then click on it to add. Once you installed the simulation, click the 'new' tap at the top left corner. Then, search the required blocks in the 'Simulink library.' Then, drag it to the editor space. You can double-click on the blocks to see the input parameters Then, connect the blocks by dragging a line from one block's output terminal to another block's input. If the connection is complete, click the 'run' tab in the middle of the top navbar.   After clicking on the run button, your Simulink is ready. Then double-click on any block to see the output   The following block diagram is an example of the MATLAB simulation of 'QPSK'
document.onmouseup=new Function ("return false"); }