Skip to main content

Hybrid Beamforming | Page 1



Hybrid Beamforming:

Hybrid beam formation was developed to address some of the limitations of digital pre-coding approaches. Every antenna element is connected to an RF chain in digital pre-coding (beam forming) method. We also know that each RF chain is in charge of providing a separate data stream between the transmitter and the receiver. We know that a larger number of independent data streams leads to higher data rates. It has a spatial multiplexing feature for MIMO. As a result, we may assume that switching from MIMO to massive MIMO will benefit us more in terms of spatial multiplexing in massive MIMO, where each antenna is coupled to a single RF chain. We'll proceed with a definition of hybrid beam forming.


Overview of hybrid beam forming with example:

Unlike digital beam forming, more than one antenna element is connected to a single RF chain in hybrid pre-coder (beam forming). Let me give you an example to help you understand. Let's assume there are 64 antenna elements in a MIMO system and we're only using four RF chains. A single RF chain is used to connect 16 antenna elements. The hybrid pre coder can be divided into two parts at this point. Because 16 antennas are joined to a single RF chain, the signal is sent by all 16 antenna elements. As a result, it can produce a beam and maximize SNR at the receiver. We may, on the other hand, guide the beam in a variety of ways. This is a characteristic of analog pre-coders (beam forming).



Fig: Hybrid Beamforming


Similarly, we can use a digital pre-coding technique to cancel interference across four existing RF networks. As a result, we can define hybrid pre-coding as a strategy that combines a lower-dimensional digital pre-coder with a big array size. The huge array is utilized to boost correlation gain at the receiver side and to remove interference between simultaneous data streams using a digital pre-coder.


Why hybrid beam forming is suitable for massive MIMO system?

Now we'll talk about why we're switching from MIMO to huge MIMO technology and why we're employing hybrid pre-coding. The first reason is that if each antenna element continues to use a single RF chain, signal processing on the reception side will become extremely complex.

Massive MIMO uses hundreds of antenna elements that are put very close together. As a result, there's a danger that antenna elements will be burned. Second, for smaller dimensional MIMO, such as 2 X 2, 3 X 3 MIMO, digital pre-coding is fine. This is also useful for MIMO point-to-point transmission.

However, if the size of MIMO grows larger, such as beyond 8 x 8 MIMO, point-to-point communication becomes less scalable. In the context of signal processing at the receiver, it becomes more complicated. On the other hand, increasing the antenna array size results in better signal correlation at the receiver side, which helps to battle high path-loss, particularly when employing a very high frequency band, such as the millimeter wave band.

Signals in the higher frequency spectrum are reflected and refracted several times. As a result, receiving LOS (Line of Sight) between transmitter and receiver is extremely challenging. Point-to-point communication is not a smart concept in this situation. As a result, we adopt a hybrid pre-coding technique with fewer RF chains and a big array antenna (in the analogue pre-coder component) to boost gain even further. As a result, the hybrid pre-coding technique is both cost-effective and simple. We attain the same degree of performance in hybrid pre-coding as we do in digital pre-coding.



MATLAB is a powerful mathematical tool that assists students, engineers, and scientists in implementing mathematics in complicated systems and producing understandable graphs and graphics. Now, using MATLAB, we will compare different types of beamforming, such as analogue beamforming, digital beamforming, and hybrid beamforming.

Assume you have a MIMO system with 64 antenna elements on the transmitter and 16 antenna elements on the receiver.

MATLAB Script:

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

FFT Magnitude and Phase Spectrum using MATLAB

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 📚 Further Reading   MATLAB Code  % Developed by SalimWireless.Com clc; clear; close all; % Configuration parameters fs = 10000; % Sampling rate (Hz) t = 0:1/fs:1-1/fs; % Time vector creation % Signal definition x = sin(2 * pi * 100 * t) + cos(2 * pi * 1000 * t); % Calculate the Fourier Transform y = fft(x); z = fftshift(y); % Create frequency vector ly = length(y); f = (-ly/2:ly/2-1) / ly * fs; % Calculate phase while avoiding numerical precision issues tol = 1e-6; % Tolerance threshold for zeroing small values z(abs(z) < tol) = 0; phase = angle(z); % Plot the original Signal figure; subplot(3, 1, 1); plot(t, x, 'b'); xlabel('Time (s)'); ylabel('|y|'); title('Original Messge Signal'); grid on; % Plot the magnitude of the Fourier Transform subplot(3, 1, 2); stem(f, abs(z), 'b'); xlabel('Frequency (Hz)'); ylabel('|y|'); title('Magnitude o...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...