Skip to main content

Optimal Power Allocation in MIMO Transmission using SVD


 SVD-Based MIMO Transmission & Optimal Power Allocation



Optimal power allocation is defined as in a MIMO communication system we need to allocate more power to an independent stronger path and allocation of less power to a weaker path. By following this method we can achieve high throughput. Firstly, we talk about SVD-based MIMO. Then we discussed step by step how to find stronger or weaker communication paths between two MIMO antennas. 


Channel Matrix,



Let's assume, the first column in the above matrix is c1  .  c  and    c

are the 2nd and 3rd columns, respectively.


Here, columns are orthogonal for instance, i.e.,  c1Hc=0

Here, r=3, t=3  (r=number of Rx antenna; t=number of Tx antenna)


Now, c1


c2





Now, c1Hc2

 *



=0


Multiplication is 0 since the columns are orthogonal.



Step 1: We normalize each column

We get, H=


Here singular values are not in decreasing order.


Step 2: Now we arrange the singular values in decreasing order


H=



 



That implies,





Again assume, the first matrix is (unitary matrix), the middle one is Σ (eigenmatrix)and 3rd matrix is (unitary matrix).

Alternatively, UUH=I,     VHV=VVH=I


Σ =





In the above matrix, σ1=√52, σ2=√13, σ3=2, and Singular values are in decreasing order.


At receiver side   

            y ̃UHy =

           





At the transmitter side

  ͞x =V x ̃

Or,




Here, notation "x1~, x2~, x3~" represents original message signal vector


Transmit pre-processing or precoding at the receiver side

ỹ= Σx̃ + w̃

Or,




Here, "y~" represents the received signal vector and "w~" represents the noise vector


Now, 3 decoupled channel spatial multiplexing are as follows

ỹ1 = √52x̃1 + w̃1

ỹ2 = √13x̃2 + w̃2

ỹ3 = 2x̃3 + w̃3


Optimal Power allocation

To maximize sum-rate and to achieve the Shannon capacity,

P1=(1/λ- σ212)= (1/λ- σ2/52)

P2=(1/λ- σ222)= (1/λ- σ2/13)

P3=(1/λ- σ232)= (1/λ- σ2/4)

 

Consider the noise power, σ2= 0dB

                                         So, 10log10 σ2=0

                                              σ2=10^(0/10)=1

let P=total power=3dB

                  So, 10log10 P=3

                                      P=10^(3/10)=2 (approx.)

 

So, we must have

                 P1+P2+P3= 2

                (1/λ-1/52)+  (1/λ-1/13)+  (1/λ-1/4)=2

               Or, 1/λ=.7821

Now,

P1=10log10(1/λ- σ2/52)= 10log10(0.7821- 1/52)=-1.1755 dB

P2=10log10(1/λ- σ2/13)= 10log10(0.7821- 1/13)=-1.517 dB

P1=10log10(1/λ- σ2/4)= 10log10(0.7821- 1/4)=-2.74 dB

Power allocation decreases as gain σ2 decreases. So, we can say poor power to poor channel , more power to strong channel.



People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Constellation Diagram of ASK in Detail

A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

Periodogram in MATLAB

Power Spectral Density Estimation Using the Periodogram Step 1: Signal Representation Let the signal be x[n] , where: n = 0, 1, ..., N-1 (discrete-time indices), N is the total number of samples. Step 2: Compute the Discrete-Time Fourier Transform (DTFT) The DTFT of x[n] is: X(f) = ∑ x[n] e -j2πfn For practical computation, the Discrete Fourier Transform (DFT) is used: X[k] = ∑ x[n] e -j(2π/N)kn , k = 0, 1, ..., N-1 k represents discrete frequency bins, f_k = k/N * f_s , where f_s is the sampling frequency. Step 3: Compute Power Spectral Density (PSD) The periodogram estimates the PSD as: S_x(f_k) = (1/N) |X[k]|² S_x(f_k) ...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024]  UGC Net Paper 1 With Answer Key Download Pdf [Sep 2024] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [Sep 2024]  UGC Net Paper 1 With Answer Key Download Pdf [June 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

5G Channel Estimation using Orthogonal Matching Pursuit (OMP)

5G Channel Estimation... For millimeter wave massive MIMO communication in 5G, we observe that the number of available multipath that avails communication is much smaller than the maximum connections possible between the transmitter(TX) and receiver(RX). Only a few MPCs reach at receiver with good received signal strength. For example, the number of strong MPCs that reaches the receiver is L and there is N transmitter antenna on the transmitter side and N number of antennas on the receiver side. So, from the channel matrix of the massive MIMO system, we can say the total number of available paths or connections between TX and RX is equal to, N X N or, N^(2) Now, L << N^(2) For simplicity, if the number of possible strong beams from the transmitter and receiver sides are NtBeams and NrBeams, then, L = NtBeams * NrBeams If we look up the massive MIMO channel matrix , then, H= Primarily, if the number of available MPCs to avail communication bet...

OFDM for 4G & 5G

📘 Overview 📘 Example: (OFDM using QPSK) 🧮 MATLAB Codes 🧮 Q & A and Summary 📚 Further Reading   Orthogonal Frequency Division Multiplexing When a signal with high bandwidth traverses through a medium, it tends to disperse more compared to a signal with lower bandwidth. A high-bandwidth signal comprises a wide range of frequency components. Each frequency component may interact differently with the transmission medium due to factors such as attenuation, dispersion, and distortion. OFDM combats the high-bandwidth frequency selective channel by dividing the original signal into multiple orthogonal multiplexed narrowband signals. In this way it, overcomes the inter-symbol interferences (ISI) issue. Block Diagram     ‘k’ indicates kth position in a input symbol N is the number of subcarriers   Example: (OFDM using QPSK) 1.        Input Parameters: N   Number of Input bits: 128 Number ...