Skip to main content

5G : Channel modelling for millimeter wave


Channel modelling for millimeter wave 5G communication:

In general, we employ 1. analytical channel modelling; 2. map based channel modelling; and 3. sinusoidal channel modelling for wireless communication channel modelling. Analytical modelling is based on measurements such as pathloss, rms delay spread, and so on. Map-based channel modelling, on the other hand, is focused on the geographical architecture of a specific location. When we derive a channel model for a specific frequency band, we use these two models. We'll focus on channel modelling for millimetre wave communication, which is a promising contender for enabling 5G communications.

When interacting with metal, glass, and other surfaces, mm Wave signals have a higher reflectivity and are more easily absorbed by air, rain, and other elements than signals in lower frequency bands. Furthermore, its diffraction ability is reduced. As we aforementioned channel modelling approaches fall into one of three categories: analytical modelling, map-based modelling, and stochastic modelling. Analytical modelling uses a set of established parameters, whereas ray-tracing-based modelling focuses on locating signal paths in the environment. For applications such as massive MIMO and enhanced beam formation, the map-based model delivers precise and realistic spatial channel features.


Analytical Channel Modelling:

The appropriate statistical parameters such as number of pathways, root-mean-square (RMS) delay spread, path loss, and shadowing of the propagation channel can be produced using the analytical modelling approach, which is based on the data of measurements or statistical characteristics of the scenario. Without taking into account the specifics of the environment, this method can be represented using a given set of parameters. As a result, in an anisotropic radio environment, the analysis result may be inaccurate.


Map-based Channel Modelling:

For applications such as massive MIMO and sophisticated beamforming, the map-based model delivers precise and realistic spatial channel features. It automatically generates spatially consistent modelling for difficult instances like D2D and V2V links with dual-end mobility. Ray tracing is used in conjunction with a reduced 3D geometric description of the propagation environment to create the model. Diffraction, specular reflection, diffuse scattering, and blocking are all considered important propagation mechanisms. The electromagnetic material properties of building walls are modelled as rectangular surfaces. There is no explicit path loss model in the map-based model. Instead, path loss, shadowing, and other propagation features are defined by the map layout and, optionally, a random distribution of objects that account for people, automobiles, and trees, among other things.


General description:

A geometrical representation of the environment – such as a map or a building layout expressed in a three-dimensional (3D) Cartesian coordinate system – is required for any ray-tracing-based model. It is not necessary to have a high level of map detail. Building walls and potentially other fixed structures are the only things that need to be defined.

Here in the above figure signal reaches to cell phone via MPCs where paths are either reflected or reflected. The probability of LOS path decreases as operating frequency increases.


Creation of the environment:

When walls are modelled as rectangular surfaces, a 3D map comprising coordinate points of wall corners is constructed. Both outside and indoor maps, as well as the position of indoor walls within a building block, are defined in the outdoor-to-indoor instance. The map is then strewn with random scattering/shadowing objects that depict persons, automobiles, and other items. The item positions can then be defined either based on a known regular pattern, such as the spectator seats in a stadium, or randomly selected from a uniform distribution with a set situation dependent density.


Determination of propagation pathways:

Direct, diffraction, specular reflection, and diffuse scattering must all be represented for this purpose, as seen in Figure above. The diffuse scattering caused by rough surfaces is compensated for by placing point scatterers on the external walls' surface.

Here in millimeter wave channel modelling map-based channel modeling is very important because here types of obstacle's surfaces, constructional architecture of a area, angle of arrival and departure (AoA and AoD) matters a lot.


Stochastic Channel Modelling:

The stochastic model is based on the Geometry-based Stochastic Channel Models (GSCMs) family, which includes 3GPP 3D Channel Models. It concentrates on path loss, the sum-of-sinusoids approach for calculating large-scale parameters, and so on.

#beamforming

Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ï€)) ∫â‚“∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Wireless Communication Interview Questions | Page 2

Wireless Communication Interview Questions Page 1 | Page 2| Page 3| Page 4| Page 5   Digital Communication (Modulation Techniques, etc.) Importance of digital communication in competitive exams and core industries Q. What is coherence bandwidth? A. See the answer Q. What is flat fading and slow fading? A. See the answer . Q. What is a constellation diagram? Q. One application of QAM A. 802.11 (Wi-Fi) Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc. A.  Click here Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM? A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on  "Modulation Techniques" . Q.  Real-life application of QPSK modulation and demodulation Q. What is  OFDM?  Why do we use it? Q. What is the Cyclic prefix in OFDM?   Q. In a c...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 📚 QPSK vs BPSK and QAM: A Comparison of Modulation Schemes in Wireless Communication 📚 Real-World Example 🧮 MATLAB Code 📚 Further Reading   QPSK provides twice the data rate compared to BPSK. However, the bit error rate (BER) is approximately the same as BPSK at low SNR values when gray coding is used. On the other hand, QPSK exhibits similar spectral efficiency to 4-QAM and 16-QAM under low SNR conditions. In very noisy channels, QPSK can sometimes achieve better spectral efficiency than 4-QAM or 16-QAM. In practical wireless communication scenarios, QPSK is commonly used along with QAM techniques, especially where adaptive modulation is applied. Modulation Bits/Symbol Points in Constellation Usage Notes BPSK 1 2 Very robust, used in weak signals QPSK 2 4 Balanced speed & reliability 4-QAM ...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...