Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Filters Computer Networks

5G : Channel modelling for millimeter wave


Channel modelling for millimeter wave 5G communication:

In general, we employ 1. analytical channel modelling; 2. map based channel modelling; and 3. sinusoidal channel modelling for wireless communication channel modelling. Analytical modelling is based on measurements such as pathloss, rms delay spread, and so on. Map-based channel modelling, on the other hand, is focused on the geographical architecture of a specific location. When we derive a channel model for a specific frequency band, we use these two models. We'll focus on channel modelling for millimetre wave communication, which is a promising contender for enabling 5G communications.

When interacting with metal, glass, and other surfaces, mm Wave signals have a higher reflectivity and are more easily absorbed by air, rain, and other elements than signals in lower frequency bands. Furthermore, its diffraction ability is reduced. As we aforementioned channel modelling approaches fall into one of three categories: analytical modelling, map-based modelling, and stochastic modelling. Analytical modelling uses a set of established parameters, whereas ray-tracing-based modelling focuses on locating signal paths in the environment. For applications such as massive MIMO and enhanced beam formation, the map-based model delivers precise and realistic spatial channel features.


Analytical Channel Modelling:

The appropriate statistical parameters such as number of pathways, root-mean-square (RMS) delay spread, path loss, and shadowing of the propagation channel can be produced using the analytical modelling approach, which is based on the data of measurements or statistical characteristics of the scenario. Without taking into account the specifics of the environment, this method can be represented using a given set of parameters. As a result, in an anisotropic radio environment, the analysis result may be inaccurate.


Map-based Channel Modelling:

For applications such as massive MIMO and sophisticated beamforming, the map-based model delivers precise and realistic spatial channel features. It automatically generates spatially consistent modelling for difficult instances like D2D and V2V links with dual-end mobility. Ray tracing is used in conjunction with a reduced 3D geometric description of the propagation environment to create the model. Diffraction, specular reflection, diffuse scattering, and blocking are all considered important propagation mechanisms. The electromagnetic material properties of building walls are modelled as rectangular surfaces. There is no explicit path loss model in the map-based model. Instead, path loss, shadowing, and other propagation features are defined by the map layout and, optionally, a random distribution of objects that account for people, automobiles, and trees, among other things.


General description:

A geometrical representation of the environment – such as a map or a building layout expressed in a three-dimensional (3D) Cartesian coordinate system – is required for any ray-tracing-based model. It is not necessary to have a high level of map detail. Building walls and potentially other fixed structures are the only things that need to be defined.

Here in the above figure signal reaches to cell phone via MPCs where paths are either reflected or reflected. The probability of LOS path decreases as operating frequency increases.


Creation of the environment:

When walls are modelled as rectangular surfaces, a 3D map comprising coordinate points of wall corners is constructed. Both outside and indoor maps, as well as the position of indoor walls within a building block, are defined in the outdoor-to-indoor instance. The map is then strewn with random scattering/shadowing objects that depict persons, automobiles, and other items. The item positions can then be defined either based on a known regular pattern, such as the spectator seats in a stadium, or randomly selected from a uniform distribution with a set situation dependent density.


Determination of propagation pathways:

Direct, diffraction, specular reflection, and diffuse scattering must all be represented for this purpose, as seen in Figure above. The diffuse scattering caused by rough surfaces is compensated for by placing point scatterers on the external walls' surface.

Here in millimeter wave channel modelling map-based channel modeling is very important because here types of obstacle's surfaces, constructional architecture of a area, angle of arrival and departure (AoA and AoD) matters a lot.


Stochastic Channel Modelling:

The stochastic model is based on the Geometry-based Stochastic Channel Models (GSCMs) family, which includes 3GPP 3D Channel Models. It concentrates on path loss, the sum-of-sinusoids approach for calculating large-scale parameters, and so on.

#beamforming

Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK ASK or OFF ON Keying Ask is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  then it transmits no power. But the receiver is intelligent enough to deflect whether you've sent binary bit  "1"  or  "0

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2018] UGC Net Electronic Science Questions With Answer Key Download Pdf [July 2018] UG

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal to Noise Ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power is twice as

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between two signals or symbols. Figure 1: Constellation diagrams of ASK, PSK, and FSK The constellation points for ASK, PSK, and FSK [↗] are located in a different pattern, and the distances between the constellation points vary. According to the above diagram, the distance between ASK constellation points is (√Eb -0) = √Eb (where Eb stands for energy per bit). From the above figure, you can also see the distances between constellation points for PSK and FSK are 2√Eb and √(2Eb), respectively. In a constellation diagram, if the distance between signaling points is less, then the probability

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear all; close all; EbN0=-4:1:24; % Signal to Noise Ratio per Bit (in dB) EbN0ratio=10.^(EbN0/10); % Converted into ratio colors={'k-*','r-h','g-o','c-s','m-s','y-*','k-p','b:s','m:d','g:p'}; index=1; %BPSK BPSK_BER = 0.5*erfc(sqrt(EbN0ratio)); plotHandle=plot(EbN0,log10(BPSK_BER),char(colors(index))); set(plotHandle,'LineWidth',1.7); hold on; index=index+1; %M-PSK m=2:1:5; M=2.^m; for i=M, k=log2(i); PSK_BER = 1/k*erfc(sqrt(EbN0ratio*k)*sin(pi/i)); plotHandle=plot

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;