Skip to main content

Difference between AWGN and Rayleigh Fading



1. Introduction

Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗], are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. 



Fig: Rayleigh Fading due to multi-paths

Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading.

y = h*x + n ... (i)

Symbol '*' represents convolution.

The transmitted signal x is multiplied by the channel coefficient or channel impulse response (h) in the equation above, and the symbol "n" stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading.


2. Additive White Gaussian Noise (AWGN)

The mathematical effect involves adding Gaussian-distributed noise to the modulated signal. The received signal y(t) is given by:

y(t) = x(t) + n(t)

Where:
x(t) is the modulated signal.
n(t) is the AWGN.

The effect of AWGN is to add random variations to the amplitude of the signal, which can lead to erroneous detection of the transmitted symbols. The SNR (signal-to-noise ratio) plays a crucial role in determining the quality of demodulation, with higher SNR values leading to better performance.

We measure SNR at the receiver side due to AWGN for a variety of reasons. For additional information about the Gaussian Noise and its PDF, click here. Because the power spectrum density of this type of noise is frequency independent, the term "white Gaussian noise" has been used here.


3. Rayleigh Fading

Mathematically, Rayleigh fading can be represented as a complex Gaussian random variable with zero mean and a certain variance. The received signal y(t) in the presence of Rayleigh fading can be represented as:

y(t) = h * x(t) + n(t)

Where:

This symbol '*' represents convolution

h is the complex fading coefficient, representing the channel gain and phase shift.

x(t) is the modulated signal.

n(t) is the noise.

The fading coefficient h introduces random amplitude and phase variations to the signal. Due to the randomness of h, the received signal's amplitude will experience fluctuations, impacting the detection of transmitted symbols. The actual fading distribution might vary depending on the specific channel characteristics.


We will now talk about Rayleigh fading. We'll start by talking about what fading actually is. Any sort of wireless communication uses many paths (LOS or NLOS) [↗] to carry the signal from the transmitter to the receiver. To learn more about multi-paths (MPCs) in wireless communication, click here [↗]. Due to various reflections or diffractions from building walls, vegetation, etc., as they pass through multi-paths, the resulting signal at the receiver may be additive or destructive. Diversity, which is achieved by multi-antenna transmission and reception, is the best method to deal with this scenario. The topic " Diversity" will be covered in a later article.

The Rayleigh fading coefficient, or h in equation (i) above, is a complex coefficient that depends on the signal's attenuation and delay spread.

The Rayleigh distribution describes how the amplitudes of channel coefficients vary over a range. If the amplitude of the channel coefficient, a = |h|, then the distribution of the channel coefficient,

fA(a) = 2ae-a^2,  a>=0

On the other hand, the phases of the fading channel coefficient are distributed over the range of 0 degrees to 2П (or, 2*pi).


Simulator for the Effect of AWGN and Rayleigh Fading on a BPSK Signal

This simulation below represents a standard wireless communication system featuring 4 multipath components, each separated by 1 millisecond, and employing BPSK modulation at a data rate of 100 bps














MATLAB Code to demonstrate the effects of AWGN and Rayleigh fading on wireless communication channels

 

 Output

 

 
Fig 1: Effects of AWGN and Rayleigh Fading in Wireless Communication
 
 

Equalizer to reduce Rayleigh Fading or Multi-path Effects

 







MATLAB Code to overcome the effect of the Rayleigh Fading with Receiver Diversity Gain

 

Output

 
 
Fig 2: BER vs SNR for Equal Gain Combining (EGC)





Q. Why does Rayleigh fading occur?
A. Due to multi-path

Q. Which kind of fading is Rayleigh fading, exactly?

A. Small-scale fading

Q. What other type of fading is there?

A. Large-scale fading

Q. When deep fade occurs?

You can notice a sudden drop in signal power while performing a signal analysis or spectrum analysis. If the signals that reach the receiver are fully destructive, as we have already discussed, this phenomenon is known as "deep fading." Such a condition may also arise as a result of signal shadowing, etc. [Read More about Fading: Slow & Fast Fading and Large & Small Scale Fading, etc.]

 

Further Reading 


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

📘 Overview 🧮 Baseband and Passband Implementations of ASK, FSK, and PSK 🧮 Difference betwen baseband and passband 📚 Further Reading 📂 Other Topics on Baseband and Passband ... 🧮 Baseband modulation techniques 🧮 Passband modulation techniques   Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike this, the M-ary PSK signal is modulated with a different phase-shifted version of the carrier signal and varying amplitude levels. Let me give an example for better comprehension. QAM = ASK +...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory of Pulse Amplitude Moduation (PAM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal 🧮 Simulation results for comparison of PAM, PWM, PPM, DM, and PCM 📚 Further Reading 📂 Other Topics on Pulse Amplitude Modulation ... 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM)   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with per...

Definition of the Fourier Series

  1. Introduction Most of the phenomena studied in the domain of Engineering and Science are periodic in nature. For instance, current and voltage in an alternating current circuit. These periodic functions could be analyzed into their constituent components (fundamentals and harmonics) by a process called Fourier analysis. A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. Fourier series is used to describe a periodic signal in terms of cosine and sine waves. In other words, it allows us to model any arbitrary periodic signal with a combination of sines and cosines.      Fig: Sine Wave       Fig: Triangular Wave    Fig: Sawtooth Wave      Fig: Square Wave   2. The common form of the Fourier series Sinusoidal functions are periodic over 2Ï€ angular distance. For a perio...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...