Skip to main content

Theoretical BER vs SNR for m-ary PSK and QAM


The relationship between Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) is a fundamental concept in digital communication systems. Here’s a detailed explanation:

  • BER (Bit Error Rate): The ratio of the number of bits incorrectly received to the total number of bits transmitted. It measures the quality of the communication link.
  • SNR (Signal-to-Noise Ratio): The ratio of the signal power to the noise power, indicating how much the signal is corrupted by noise.

Relationship

The BER typically decreases as the SNR increases. This relationship helps evaluate the performance of various modulation schemes.

BPSK (Binary Phase Shift Keying)

  • Simple and robust.
  • BER in AWGN channel: BER = 0.5 × erfc(√SNR)
  • Performs well at low SNR.

QPSK (Quadrature Phase Shift Keying)

  • Transmits 2 bits per symbol.
  • BER: BER = 0.5 × erfc(√(SNR))
  • More spectrally efficient than BPSK, slightly higher BER at same SNR.

M-ary PSK (Phase Shift Keying)

  • Encodes multiple bits using M phases.
  • General BER expression is complex and depends on cos and sin terms.
  • Higher-order schemes (e.g., 8-PSK, 16-PSK) have higher BER for same SNR.

M-ary PSK is a modulation technique where each symbol represents log₂(M) bits by shifting the phase of a carrier. The phases are spaced evenly in a circle, and the distance between points decreases with higher M, making it more error-prone at low SNRs.

BER (approximate for large M and high SNR in AWGN):


BER ≈ (2 / log₂(M)) × erfc(√SNR × sin(Ï€ / M))
  • As M increases, spectral efficiency improves but BER performance degrades.
  • Gray coding is typically used to minimize BER.
  • Exact BER uses summation expressions, but approximations are common for analysis.

M-ary QAM (Quadrature Amplitude Modulation)

  • Uses both amplitude and phase variations.
  • BER: BER = (log₂(M)/2) × (1 - 1/√M) × erfc(√((3SNR)/(M - 1)))
  • Higher-order QAM (e.g., 16-QAM, 64-QAM) is more spectrally efficient, but BER increases with order.

Practical Considerations

  • AWGN Channel: Additive White Gaussian Noise affects the signal; SNR is key to system performance.
  • Simulation: SNR is varied to analyze BER behavior using tools like MATLAB.
  • Error Correction: Techniques like Forward Error Correction (FEC) help reduce BER.

Example

For a BPSK system in an AWGN channel:

Formula: BER = 0.5 × erfc(√SNR)

At SNR = 0 dB: BER ≈ 0.078649603525

Conclusion

Understanding the BER vs. SNR relationship is essential for designing efficient digital communication systems. Different modulation schemes provide trade-offs between spectral efficiency and BER performance.

 

Further Reading


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diff...

Hybrid Beamforming | Page 2

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | clear all; close all; clc; Nt = 64; Nr = 16; NtRF = 4; NrRF = 4; At both the transmitter and receiver ends, there are four RF chains only for a hybrid beamforming system. Alternatively, every 16 antenna elements on the transmitter side is connected to a single RF chain, while every 4 antenna elements on the receiver side are connected to a single RF chain. Mixers, amplifiers, and other critical wireless communication components make up the RF chain. Now, in the case of hybrid beamforming, there can be four different data streams between the transmitter and receiver, as both sides have four RF chains, each of which is accountable for a separate data stream. For Analog Beamforming: All 64 Tx antenna elements create a beam or focus the resultant correlated signal spread from adjacent antennas to a particular direction. Similarly, it may be used for beam...

Constellation Diagram of FSK in Detail

📘 Overview 🧮 Simulator for constellation diagram of FSK 🧮 Theory 🧮 MATLAB Code 📚 Further Reading   Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK) . Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel. Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'. Simulator for 2-FSK Constellation Diagram Simulator for 2-FSK Constellation Diagram SNR (dB): ...

Theoretical BER vs SNR for binary ASK and FSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical Ber vs SNR for Amplitude Shift Keying (ASK) The theoretical bit error rate (BER) for binary Amplitude Shift Keying (ASK) as a function of the signal-to-noise ratio (SNR) can be derived using the following expression: If we map the binary signals to 1 and -1 in ASK , the probability of bit error will be: BER = Q(√(2*SNR))   If we map the binary signals to 0 and 1 in ASK , the probability of bit error will be:    BER = Q(√(SNR/2))   Where: Q(x) is the Q-function, which is the tail probability of the standard normal distribution. SNR is the signal-to-noise ratio. N0 is the noise power spectral density. Where Q is the Q function In mathematics Q(x) = 0.5 * erfc(x/ √ 2)   Calculate the Probability of Error using Q-function for ASK: For ASK with amplitudes 0 and 1 : When bit '0' is transmitted, the received signal is noise only . When bit '1' is transmitted, the re...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

How Windowing Affects Your Periodogram

The windowed periodogram is a widely used technique for estimating the Power Spectral Density (PSD) of a signal. It enhances the classical periodogram by mitigating spectral leakage through the application of a windowing function. This technique is essential in signal processing for accurate frequency-domain analysis.   Power Spectral Density (PSD) The PSD characterizes how the power of a signal is distributed across different frequency components. For a discrete-time signal, the PSD is defined as the Fourier Transform of the signal’s autocorrelation function: S x (f) = FT{R x (Ï„)} Here, R x (Ï„)}is the autocorrelation function. FT : Fourier Transform   Classical Periodogram The periodogram is a non-parametric PSD estimation method based on the Discrete Fourier Transform (DFT): P x (f) = \(\frac{1}{N}\) X(f) 2 Here: X(f): DFT of the signal x(n) N: Signal length However, the classical periodogram suffers from spectral leakage due to abrupt truncation of the ...