Skip to main content

Applications of a Raise Cosine Filter

 

For a typical wireless communication system, we use modulation schemes and filters before transmitting the signal. The main purpose of using it is to transmit a proper waveform so that we can recover the signal at the receiving end more accurately. 

If the roll-off factor is Î±, then 

Bandwidth (B) = (1 + α) / (2 * T)

where T is the time interval. The filter response is zero outside that.

The roll-off factor is a parameter used to shape the spectrum of a digital signal in communication systems, and it is not just the product of time and bandwidth. It affects both the time and frequency domain characteristics of the signal.


Example

According to the Nyquist criterion, the sampling frequency of a signal must be at least twice the highest frequency present in the message signal. Conversely, during signal transmission, the bandwidth of the transmitted signal must be at least half the symbol rate to ensure inter-symbol interference (ISI)-free transmission. A raised cosine filter facilitates this requirement.

For example, if the symbol rate is 100 symbols per second, the minimum bandwidth required for ISI-free transmission is: 100 / 2 = 50 Hz

In simple terms, the symbol rate indicates that symbols are changing 100 times per second. To recover the transmitted signal at the receiver end without ISI, the minimum transmission bandwidth required is 50 Hz.

The bandwidth of a raised cosine filter is given by the formula:

Bandwidth = (Symbol Rate × (1 + α)) / 2

where α is the roll-off factor of the filter. If the roll-off factor α is 0.25, the bandwidth is calculated as:

Bandwidth = (100 × (1 + 0.25)) / 2 = 62.5 Hz

This bandwidth (62.5 Hz) exceeds the minimum requirement of 50 Hz for transmitting a signal at a symbol rate of 100 symbols per second. 

 

 MATLAB Code for the example above

% The code is developed by SalimWireless.Com
clc;
clear;
close all;

% Parameters
fs = 1000; % Sampling frequency in Hz
symbolRate = 100; % Symbol rate (baud)
span = 6; % Filter span in symbols
alpha = 0.25; % Roll-off factor for raised cosine filter


% Generate random data symbols
numSymbols = 100; % Number of symbols
data = randi([0 1], numSymbols, 1) * 2 - 1; % Generate random binary data (BPSK symbols: -1, 1)

% Upsample the data to match sampling rate
samplesPerSymbol = fs / symbolRate; % Samples per symbol based on fs and symbol rate
dataUpsampled = upsample(data, samplesPerSymbol);

% Create a raised cosine filter
rcFilter = rcosdesign(alpha, span, samplesPerSymbol, 'sqrt'); % Square root raised cosine filter

% Apply the filter to the upsampled data
txSignal = conv(dataUpsampled, rcFilter, 'same');

figure;
subplot(4,1,1)
stem(data);
title('Original Message signal');
grid on;

subplot(4,1,2)
plot(dataUpsampled);
title('Upsampled Message signal');
grid on;

subplot(4,1,3)
plot(rcFilter);
title('Raise Cosine Filter Coefficient');
grid on;

subplot(4,1,4)
plot(txSignal);
title('Transmitted Signal after Raised Cosine Filtering');
grid on;

Output 

 




 
 


 


MATLAB code for raise-cosine filter


 

Result


Figure: Raise-Cosine Filter

There are 961 samples in the x-axis of the above image, as the upsampling factor is 480 here and filter span is 2.


Application

A raised cosine filter is used for pulse shaping. You might have noticed in most of the diagrams of 'communication systems.' It is common to use this type of filter after the modulation module.

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

What are the main lobe and side lobes in Beamforming

    What are the main lobe and side lobes in Beamforming? You've probably noticed that in the diagram of  beamforming , there are two types of lobes in beamforming patterns. One is the main lobe, while the others are side lobes. We intend to communicate with receivers with a stronger directional path from the transmitter when we produce beams for wireless communication. We can also see side lobes in this scenario. These side lobes, on the other hand, are not necessary for effective communication. As a result, we take various procedures to remove those side lobes or to reduce the number of side lobes as much as feasible; otherwise, inter-symbol interference  occurs, and signal quality suffers. Figure: Illustration of Main Lobe and Side lobes, where the x-axis denotes the angle of arrival (AOA) and angle of departure (AOD), respectively, while, the y-axis denotes the gain/power in dB (decibel).     In the case of MIMO antennas, our major goal is to reduce int...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

Pulse Amplitude Modulation (PAM) & Demodulation 📘 Overview & Theory of Pulse Amplitude Modulation (PAM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal 🧮 Simulation Results for Comparison of PAM, PWM, PPM, DM, and PCM 📚 Further Reading 📂 Other Topics on Pulse Amplitude Modulation ... 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital Data 🧮 Other Pulse Modulation Techniques (PWM, PPM, DM, PCM) Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm = 10; % frequency of the message signal fc = 100; % frequency of the carrier signal fs = 100...