Skip to main content

Applications of a Raise Cosine Filter

 

For a typical wireless communication system, we use modulation schemes and filters before transmitting the signal. The main purpose of using it is to transmit a proper waveform so that we can recover the signal at the receiving end more accurately. 

If the roll-off factor is Îą, then 

Bandwidth (B) = (1 + Îą) / (2 * T)

where T is the time interval. The filter response is zero outside that.

The roll-off factor is a parameter used to shape the spectrum of a digital signal in communication systems, and it is not just the product of time and bandwidth. It affects both the time and frequency domain characteristics of the signal.


Example

According to the Nyquist criterion, the sampling frequency of a signal must be at least twice the highest frequency present in the message signal. Conversely, during signal transmission, the bandwidth of the transmitted signal must be at least half the symbol rate to ensure inter-symbol interference (ISI)-free transmission. A raised cosine filter facilitates this requirement.

For example, if the symbol rate is 100 symbols per second, the minimum bandwidth required for ISI-free transmission is: 100 / 2 = 50 Hz

In simple terms, the symbol rate indicates that symbols are changing 100 times per second. To recover the transmitted signal at the receiver end without ISI, the minimum transmission bandwidth required is 50 Hz.

The bandwidth of a raised cosine filter is given by the formula:

Bandwidth = (Symbol Rate × (1 + Îą)) / 2

where Îą is the roll-off factor of the filter. If the roll-off factor Îą is 0.25, the bandwidth is calculated as:

Bandwidth = (100 × (1 + 0.25)) / 2 = 62.5 Hz

This bandwidth (62.5 Hz) exceeds the minimum requirement of 50 Hz for transmitting a signal at a symbol rate of 100 symbols per second. 

 

 MATLAB Code for the example above

% The code is developed by SalimWireless.Com
clc;
clear;
close all;

% Parameters
fs = 1000; % Sampling frequency in Hz
symbolRate = 100; % Symbol rate (baud)
span = 6; % Filter span in symbols
alpha = 0.25; % Roll-off factor for raised cosine filter


% Generate random data symbols
numSymbols = 100; % Number of symbols
data = randi([0 1], numSymbols, 1) * 2 - 1; % Generate random binary data (BPSK symbols: -1, 1)

% Upsample the data to match sampling rate
samplesPerSymbol = fs / symbolRate; % Samples per symbol based on fs and symbol rate
dataUpsampled = upsample(data, samplesPerSymbol);

% Create a raised cosine filter
rcFilter = rcosdesign(alpha, span, samplesPerSymbol, 'sqrt'); % Square root raised cosine filter

% Apply the filter to the upsampled data
txSignal = conv(dataUpsampled, rcFilter, 'same');

figure;
subplot(4,1,1)
stem(data);
title('Original Message signal');
grid on;

subplot(4,1,2)
plot(dataUpsampled);
title('Upsampled Message signal');
grid on;

subplot(4,1,3)
plot(rcFilter);
title('Raise Cosine Filter Coefficient');
grid on;

subplot(4,1,4)
plot(txSignal);
title('Transmitted Signal after Raised Cosine Filtering');
grid on;

Output 

 




 
 


 


MATLAB code for raise-cosine filter


 

Result


Figure: Raise-Cosine Filter

There are 961 samples in the x-axis of the above image, as the upsampling factor is 480 here and filter span is 2.


Application

A raised cosine filter is used for pulse shaping. You might have noticed in most of the diagrams of 'communication systems.' It is common to use this type of filter after the modulation module.

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ī„) dĪ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Wireless Communication Interview Questions | Page 2

Wireless Communication Interview Questions Page 1 | Page 2| Page 3| Page 4| Page 5   Digital Communication (Modulation Techniques, etc.) Importance of digital communication in competitive exams and core industries Q. What is coherence bandwidth? A. See the answer Q. What is flat fading and slow fading? A. See the answer . Q. What is a constellation diagram? Q. One application of QAM A. 802.11 (Wi-Fi) Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc. A.  Click here Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM? A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on  "Modulation Techniques" . Q.  Real-life application of QPSK modulation and demodulation Q. What is  OFDM?  Why do we use it? Q. What is the Cyclic prefix in OFDM?   Q. In a c...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ī€)) ∫ₓ∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB code for Pulse Code Modulation (PCM) and Demodulation

📘 Overview & Theory 🧮 Quantization in Pulse Code Modulation (PCM) 🧮 MATLAB Code for Pulse Code Modulation (PCM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading MATLAB Code for Pulse Code Modulation clc; close all; clear all; fm=input('Enter the message frequency (in Hz): '); fs=input('Enter the sampling frequency (in Hz): '); L=input('Enter the number of the quantization levels: '); n = log2(L); t=0:1/fs:1; % fs nuber of samples have tobe selected s=8*sin(2*pi*fm*t); subplot(3,1,1); t=0:1/(length(s)-1):1; plot(t,s); title('Analog Signal'); ylabel('Amplitude--->'); xlabel('Time--->'); subplot(3,1,2); stem(t,s);grid on; title('Sampled Sinal'); ylabel('Amplitude--->'); xlabel('Time--->'); % Quantization Process vmax=8; vmin=-vmax; %to quanti...