Skip to main content

Raised Cosine Filter in MATLAB


 

MATLAB Code

clc;
clear all; close all;
Data_sym = [0 1 1 0 1 0 0 1];
M = 4;
Phase = 0;
Sampling_rate = 48e3;
Data_Rate = 100;
Bandwidth = 400;
Upsampling_factor = Sampling_rate/Data_Rate;
Rolloff = 0.4;
Upsampled_Data = upsample(pskmod(Data_sym,M,Phase),Upsampling_factor);
Pulse_shape = firrcos(2*Upsampling_factor,Bandwidth/2,Rolloff,Sampling_rate,'rolloff','sqrt');

Output

What if we change the roll-off

roll-off = 0.01



roll-off = 0.99




What if we change the bandwidth

Bandwidth = 100 Hz

 
Bandwidth = 1000 Hz 
 


What if we change the sampling rate

 Sampling rate = 10 KHz


 Sampling rate = 100 KHz



Another MATLAB Code

% The code is developed by SalimWireless.Com
clc;
clear;
close all;

% Parameters
fs = 1000; % Sampling frequency in Hz
symbolRate = 100; % Symbol rate (baud)
span = 6; % Filter span in symbols
alpha = 0.25; % Roll-off factor for raised cosine filter


% Generate random data symbols
numSymbols = 100; % Number of symbols
data = randi([0 1], numSymbols, 1) * 2 - 1; % Generate random binary data (BPSK symbols: -1, 1)

% Upsample the data to match sampling rate
samplesPerSymbol = fs / symbolRate; % Samples per symbol based on fs and symbol rate
dataUpsampled = upsample(data, samplesPerSymbol);

% Create a raised cosine filter
rcFilter = rcosdesign(alpha, span, samplesPerSymbol, 'sqrt'); % Square root raised cosine filter

% Apply the filter to the upsampled data
txSignal = conv(dataUpsampled, rcFilter, 'same');

figure;
subplot(4,1,1)
stem(data);
title('Original Message signal');
grid on;

subplot(4,1,2)
plot(dataUpsampled);
title('Upsampled Message signal');
grid on;

subplot(4,1,3)
plot(rcFilter);
title('Raise Cosine Filter Coefficient');
grid on;

subplot(4,1,4)
plot(txSignal);
title('Transmitted Signal after Raised Cosine Filtering');
grid on;
 

Output

 

 
 
 
 

Copy the MATLAB Code above from here

 

 

Further reading

 

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Hybrid Beamforming | Page 2

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | clear all; close all; clc; Nt = 64; Nr = 16; NtRF = 4; NrRF = 4; At both the transmitter and receiver ends, there are four RF chains only for a hybrid beamforming system. Alternatively, every 16 antenna elements on the transmitter side is connected to a single RF chain, while every 4 antenna elements on the receiver side are connected to a single RF chain. Mixers, amplifiers, and other critical wireless communication components make up the RF chain. Now, in the case of hybrid beamforming, there can be four different data streams between the transmitter and receiver, as both sides have four RF chains, each of which is accountable for a separate data stream. For Analog Beamforming: All 64 Tx antenna elements create a beam or focus the resultant correlated signal spread from adjacent antennas to a particular direction. Similarly, it may be used for beam...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

MATLAB Code for Channel Impulse Response

MATLAB Code for Channel Impulse Response (CIR) ๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code ๐Ÿค” How does CIR affect the signal? ๐Ÿ› ️ How to Mitigate Channel Distortion? ๐Ÿ“š Further Reading MATLAB Script for Simulating CIR This MATLAB script allows you to generate and visualize the channel impulse response (CIR). You can choose to create a 'random' multi-path channel or a near-'ideal' single-path channel to understand their distinct characteristics. % User input for choosing the type of impulse response response_type = input('Enter "random" for random channel impulse response or "ideal" for near-ideal impulse response: ', 's'); if strcmpi(response_type, 'random') % Parameters for random impulse response num_taps = input('Enter the number of taps: '); % Number of taps in the channel d...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Comparisons among ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for calculating Bandwidth of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on Comparisons among ASK, PSK, and FSK ... ๐Ÿงฎ Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

๐Ÿงฎ MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together ๐Ÿงฎ MATLAB Code for M-ary QAM ๐Ÿงฎ MATLAB Code for M-ary PSK ๐Ÿ“š Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for ...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

๐Ÿ“˜ Overview ๐Ÿงฎ Equal gain combining (EGC) ๐Ÿงฎ Maximum ratio combining (MRC) ๐Ÿงฎ Selective combining (SC) ๐Ÿงฎ Root mean square gain combining (RMSGC) ๐Ÿงฎ Zero-Forcing (ZF) Combining ๐Ÿงฎ MATLAB Code ๐Ÿ“š Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...

Ultra-Wideband | Positioning, Frequency Range, Power and AoA & AoD detection

Frequency Bands Ultra-Wideband... UWB functions with the signal's so-called Time of Flight rather than RSSI (Received Signal Strength Indication), which makes technology more precise and enables it to conduct extremely precise ranging measurements. This is in contrast to traditional radio technologies (like Bluetooth or Wi-Fi). Key Features of UWB Bands UWB in order to bring decimeter-level positioning to the market There is almost no interference with other radio communication systems Multipath signal propagation resistance  resistance to noise  Low-power transceiver required Ultra Wide Band or UWB comes under the  Super High Frequency Band (SHF) range, as SHF ranges from 3 to 30 GHz. UWB frequency range: 3.1 GHz to 10.6 GHz Ultra-wideband or UWB technology is used for high-speed short-range wireless communication protocol. Now, it is a globally accepted protocol used in Mobile Telephony, AirTags, Medical fields, and NFC (near-field co...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for calculating BER ๐Ÿงฎ MATLAB Codes for calculating theoretical BER ๐Ÿงฎ MATLAB Codes for calculating simulated BER ๐Ÿ“š Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...