Skip to main content

Discussion of some confusing questions about mm-wave 5G

 

When the channel matrix is sparse, why will we use massive MIMO?

It's used for beamforming purposes. We'll be able to build a directional beam toward the users/receivers via massive MIMO. On the other hand, we'll be able to use the spatial multiplexing property to enable simultaneous data streams from BSs or APs (access points) to numerous receivers. Let me offer you a simple example. Assume that the BS has 16 MIMO antennas and that four users want to connect to it. Now, to enable proper beamforming (on the BS side), we can use each of the four antenna elements to construct a beam that is supposed to be targeted at a specific user. Then we may utilize three more beams in the same way to link the rest three users. This is a case of spatial multiplexing in action. Obviously, need to deploy a precoding method to cancel interferences between different simultaneous paths. 


Why are we going to use mm-Wave even if it experiences a high path loss?

The main reason for choosing mm-Wave is because of its huge bandwidth capacity. In electronics, communication bandwidth is measured by a range of frequencies within a band. Here, one thing is clear: we can't increase the range of frequencies beyond transmitting or operating frequencies. For example, a 10% bandwidth at 100 KHz is only 10 KHz while a 10% bandwidth of 1 GHz is 100 MHz. Hope you got the point.


Because the coverage area of 5G is less than that of 4G, we'll be placing billions of APs (access points) everywhere, such as on the tops of street poles or on buildings. So, how can 5G maintain its ultra-low latency when there are a large number of APs and APs are connected to BSs? I hope you understood the question. Because there are many APs, the link speed may be reduced owing to a lot of processing before reaching the core network, and the same is true for the reverse connection path.   

For 5G communication, many countries are still using the sub-6 GHz spectrum. As a result, the latency will always be lower than that of the current 4G technology. However, the aforementioned issue may arise when we use the millimeter wave band for 5G connectivity. In those cases, however, APs can be connected to BSs via fiber wires. It will have the ability to behave as a simple bridge.
Backhaul, on the other hand, can be used in the future to connect BSs to BSs.  Because the millimeter wave spectrum has such a great potential for a high data transfer rate, it has a lot of potentials. Backhauls may be positioned at high altitudes. As a result, they will communicate with one another in the manner of free space communication. There will be no obstacle between the two backhauls.

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Theoretical BER vs SNR for BPSK

Theoretical Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) for BPSK in AWGN Channel Let’s simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel. Key Points Fig. 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation Transmits one of two signals: +√Eb or −√Eb , where Eb is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel The channel adds Gaussian noise with zero mean and variance N₀/2 (where N₀ is the noise power spectral density). Receiver Decision The receiver decides if the received signal is closer to +√Eb (for bit 0) or −√Eb (for bit 1) . Bit Error Rat...

What is - 3dB Frequency Response? Applications ...

📘 Overview & Theory 📘 Application of -3dB Frequency Response 🧮 MATLAB Codes 🧮 Online Digital Filter Simulator 📚 Further Reading Filters What is -3dB Frequency Response?   Remember, for most passband filters, the magnitude response typically remains close to the peak value within the passband, varying by no more than 3 dB. This is a standard characteristic in filter design. The term '-3dB frequency response' indicates that power has decreased to 50% of its maximum or that signal voltage has reduced to 0.707 of its peak value. Specifically, The -3dB comes from either 10 Log (0.5) {in the case of power} or 20 Log (0.707) {in the case of amplitude} . Viewing the signal in the frequency domain is helpful. In electronic amplifiers, the -3 dB limit is commonly used to define the passband. It shows whether the signal remains approximately flat across the passband. For example, in pulse shapi...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Theoretical BER vs SNR for m-ary PSK and QAM

Relationship Between Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) The relationship between Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) is a fundamental concept in digital communication systems. Here’s a detailed explanation: BER (Bit Error Rate): The ratio of the number of bits incorrectly received to the total number of bits transmitted. It measures the quality of the communication link. SNR (Signal-to-Noise Ratio): The ratio of the signal power to the noise power, indicating how much the signal is corrupted by noise. Relationship The BER typically decreases as the SNR increases. This relationship helps evaluate the performance of various modulation schemes. BPSK (Binary Phase Shift Keying) Simple and robust. BER in AWGN channel: BER = 0.5 × erfc(√SNR) Performs well at low SNR. QPSK (Quadrature...