Skip to main content

5G : Challenges and Potential Solutions for 5G Communication



This article will cover a variety of 5G challenges and solutions. Although 5G has the potential to meet future high data rate and bandwidth demands, there are still some big difficulties to overcome in order to make 5G a reality. We're transitioning from 4G to 5G technology as the number of connected devices to the internet grows fast. The demand for IoTs (Internet of Things) and sensors is steadily increasing these days. For many years, connected vehicles, vehicle-to-vehicle communication (V2V), and vehicle-to-infrastructure (V2I) was a major concern. To connect a large number of devices to a base station, we need more bandwidth as compared to 4G to ensure that all devices can communicate smoothly. The 5G millimeter wave band, on the other hand, offers ample spectrum resources to meet the demands. Now we'll talk about 5G's difficulties and possible solutions:




Main challenges for 5G:


1. Due to the extremely high frequency, there is a significant path loss in omnidirectional EM wave transmission.


2. Due to the very short wavelength, there is a high penetration loss.


3. Interferences and infrastructures


4. Because the coverage zone is small, billions of APs are required.


5. Safety and Privacy




Possible Solutions:



Beam forming and directional transmission to combat high path loss:


As we know, extremely high frequency or millimeter waves suffer from significant path loss due to their high frequency and short wavelength, as they are easily absorbed by air gases, vapor, and other substances. As a result, such a high frequency wave can only travel a short distance through the atmosphere.


To maximize SNR at the receiver, we use directed transmission or beam forming. By using this techniques, extra gain is added, such as transmitter and receiver gains. In contrast, if we increase the strength at the transmitter or make the beam narrower, we can expect longer distance communication than before (without beam forming).


 

Microcell, APs to combat high penetration loss:


It can barely penetrate thick obstructions due to its high frequency and short wavelength. High frequencies, on the other hand, are more reflective and refractive. It is easily refracted or refracted by barriers such as building walls, glasses, and other objects.


As a result, connecting an outdoor node (in this case, a communication node) to an indoor node is problematic.


We can APs (access points) for indoor in this circumstance. Then we'll be able to link it to outside networks. APs can be used to make microcells. Then we can connect a macro cell to several microcells. The macro cell will then be connected to the BS, and the BS will be connected to the macro cell through backhauls.

 


Enabling device to device (D2D) communication and repeaters:


For this case, especially for microcell 5G communications, we can employ device to device communication (D2D) to obtain higher spectrum efficiency. Because such communication is ideal here because interference is reduced due to high path loss, and if beam forming is used, it is a significant benefit for D2D communication. You know, if we put APs everywhere, we'll need billions of them to connect (especially, for indoor communication node). To simplify the system, we can use repeaters to replace many APs. This is cost effective also.




Security & Privacy:


All users and personal data should be secure. 5G service providers have to ensure it. Hackers may have access to a large amount of data with high-speed and ubiquitous connections of 5G. That is something that 5G companies must keep in mind.


We also know that the beam forming technique effectively reduces the chances of eavesdropping and jamming (by jammer) at the local level.


Go to main menu ↑
























P 7

What is s11 and s21 of MIMO antenna

 

MIMO system was invented to increase the system's capacity. Here capacity of the system increases linearly with the number of antennas at transmitter and receiver increases. But there is a main issue arises in MIMO system is that interference between multiple antenna elements. 

MIMO is an important feature of Wi-Fi 4 and 5, as well as 3G and 4G cellular networks. This method was developed to improve the capacity of a channel by sending many data streams simultaneously over a single channel. In a MIMO system, all simultaneous data streams are encoded orthogonally multiplexed, which lowers interference. Massive MIMO is widely utilized in 5G to achieve large capacity and communicate via beam forming or directional transmission.

Here in MIMO systems we can use different types of diversity (time, space, and frequency diversity - three are three main type of diversity) to improve Quality of service (QoS) by reducing inter-element (antenna) interference. We can use different types of different types of polarization and pattern diversity, i.e., LP (linearly polarized antennas),  CP (circularly polarized antennas), etc. to cancel interference between MIMO antenna elements. That diversity techniques are widely used in WLAN systems. 

Diversity is a technique where, especially, in case of MIMO system, multiple antennas can enable multiple data streams between transmitter and receiver simultaneously. Now, interference occurs in that system if there is no diversity. We know in case of time diversity you can send multiple signals to multiple devices using different time slots. Similar thing happens in TDM (time division multiplexing) modulation system. You know in 2G GSM we use TDM to connect 8 devices to BS thru same channel by 8 different time slots. 


Now, we can also reduce interfaces between multiple antenna elements by using good inter element isolation. For that we need to design MIMO antenna elements accordingly so that we can achieve high gain.  That is also recommended for higher WLAN frequencies.

In case of designing MIMO antennas we generally get the terms like, S11, S21, S31, etc. Here, S21 represents the reflected signal power from element or antenna no 2 due to transmission from element or antenna 1. Obviously, that causes interference if the intensity is above  the acceptable level. Usually, isolation less than -20 dB is considered as good isolation for typical MIMO systems.   

Usually, transfer of power between antenna to antenna are measured in dB or decibel. It is a logarithmic scale. In our case it is 10*log(reflected power / total transmission power). Here base of the log is 10.



People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Constellation Diagram of ASK in Detail

A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

Periodogram in MATLAB

Power Spectral Density Estimation Using the Periodogram Step 1: Signal Representation Let the signal be x[n] , where: n = 0, 1, ..., N-1 (discrete-time indices), N is the total number of samples. Step 2: Compute the Discrete-Time Fourier Transform (DTFT) The DTFT of x[n] is: X(f) = ∑ x[n] e -j2Ï€fn For practical computation, the Discrete Fourier Transform (DFT) is used: X[k] = ∑ x[n] e -j(2Ï€/N)kn , k = 0, 1, ..., N-1 k represents discrete frequency bins, f_k = k/N * f_s , where f_s is the sampling frequency. Step 3: Compute Power Spectral Density (PSD) The periodogram estimates the PSD as: S_x(f_k) = (1/N) |X[k]|² S_x(f_k) ...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024]  UGC Net Paper 1 With Answer Key Download Pdf [Sep 2024] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [Sep 2024]  UGC Net Paper 1 With Answer Key Download Pdf [June 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

5G Channel Estimation using Orthogonal Matching Pursuit (OMP)

5G Channel Estimation... For millimeter wave massive MIMO communication in 5G, we observe that the number of available multipath that avails communication is much smaller than the maximum connections possible between the transmitter(TX) and receiver(RX). Only a few MPCs reach at receiver with good received signal strength. For example, the number of strong MPCs that reaches the receiver is L and there is N transmitter antenna on the transmitter side and N number of antennas on the receiver side. So, from the channel matrix of the massive MIMO system, we can say the total number of available paths or connections between TX and RX is equal to, N X N or, N^(2) Now, L << N^(2) For simplicity, if the number of possible strong beams from the transmitter and receiver sides are NtBeams and NrBeams, then, L = NtBeams * NrBeams If we look up the massive MIMO channel matrix , then, H= Primarily, if the number of available MPCs to avail communication bet...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...