Skip to main content

5G : Challenges and Potential Solutions for 5G Communication



This article will cover a variety of 5G challenges and solutions. Although 5G has the potential to meet future high data rate and bandwidth demands, there are still some big difficulties to overcome in order to make 5G a reality. We're transitioning from 4G to 5G technology as the number of connected devices to the internet grows fast. The demand for IoTs (Internet of Things) and sensors is steadily increasing these days. For many years, connected vehicles, vehicle-to-vehicle communication (V2V), and vehicle-to-infrastructure (V2I) was a major concern. To connect a large number of devices to a base station, we need more bandwidth as compared to 4G to ensure that all devices can communicate smoothly. The 5G millimeter wave band, on the other hand, offers ample spectrum resources to meet the demands. Now we'll talk about 5G's difficulties and possible solutions:




Main challenges for 5G:


1. Due to the extremely high frequency, there is a significant path loss in omnidirectional EM wave transmission.


2. Due to the very short wavelength, there is a high penetration loss.


3. Interferences and infrastructures


4. Because the coverage zone is small, billions of APs are required.


5. Safety and Privacy




Possible Solutions:



Beam forming and directional transmission to combat high path loss:


As we know, extremely high frequency or millimeter waves suffer from significant path loss due to their high frequency and short wavelength, as they are easily absorbed by air gases, vapor, and other substances. As a result, such a high frequency wave can only travel a short distance through the atmosphere.


To maximize SNR at the receiver, we use directed transmission or beam forming. By using this techniques, extra gain is added, such as transmitter and receiver gains. In contrast, if we increase the strength at the transmitter or make the beam narrower, we can expect longer distance communication than before (without beam forming).


 

Microcell, APs to combat high penetration loss:


It can barely penetrate thick obstructions due to its high frequency and short wavelength. High frequencies, on the other hand, are more reflective and refractive. It is easily refracted or refracted by barriers such as building walls, glasses, and other objects.


As a result, connecting an outdoor node (in this case, a communication node) to an indoor node is problematic.


We can APs (access points) for indoor in this circumstance. Then we'll be able to link it to outside networks. APs can be used to make microcells. Then we can connect a macro cell to several microcells. The macro cell will then be connected to the BS, and the BS will be connected to the macro cell through backhauls.

 


Enabling device to device (D2D) communication and repeaters:


For this case, especially for microcell 5G communications, we can employ device to device communication (D2D) to obtain higher spectrum efficiency. Because such communication is ideal here because interference is reduced due to high path loss, and if beam forming is used, it is a significant benefit for D2D communication. You know, if we put APs everywhere, we'll need billions of them to connect (especially, for indoor communication node). To simplify the system, we can use repeaters to replace many APs. This is cost effective also.




Security & Privacy:


All users and personal data should be secure. 5G service providers have to ensure it. Hackers may have access to a large amount of data with high-speed and ubiquitous connections of 5G. That is something that 5G companies must keep in mind.


We also know that the beam forming technique effectively reduces the chances of eavesdropping and jamming (by jammer) at the local level.


Go to main menu ↑
























P 7

What is s11 and s21 of MIMO antenna

 

MIMO system was invented to increase the system's capacity. Here capacity of the system increases linearly with the number of antennas at transmitter and receiver increases. But there is a main issue arises in MIMO system is that interference between multiple antenna elements. 

MIMO is an important feature of Wi-Fi 4 and 5, as well as 3G and 4G cellular networks. This method was developed to improve the capacity of a channel by sending many data streams simultaneously over a single channel. In a MIMO system, all simultaneous data streams are encoded orthogonally multiplexed, which lowers interference. Massive MIMO is widely utilized in 5G to achieve large capacity and communicate via beam forming or directional transmission.

Here in MIMO systems we can use different types of diversity (time, space, and frequency diversity - three are three main type of diversity) to improve Quality of service (QoS) by reducing inter-element (antenna) interference. We can use different types of different types of polarization and pattern diversity, i.e., LP (linearly polarized antennas),  CP (circularly polarized antennas), etc. to cancel interference between MIMO antenna elements. That diversity techniques are widely used in WLAN systems. 

Diversity is a technique where, especially, in case of MIMO system, multiple antennas can enable multiple data streams between transmitter and receiver simultaneously. Now, interference occurs in that system if there is no diversity. We know in case of time diversity you can send multiple signals to multiple devices using different time slots. Similar thing happens in TDM (time division multiplexing) modulation system. You know in 2G GSM we use TDM to connect 8 devices to BS thru same channel by 8 different time slots. 


Now, we can also reduce interfaces between multiple antenna elements by using good inter element isolation. For that we need to design MIMO antenna elements accordingly so that we can achieve high gain.  That is also recommended for higher WLAN frequencies.

In case of designing MIMO antennas we generally get the terms like, S11, S21, S31, etc. Here, S21 represents the reflected signal power from element or antenna no 2 due to transmission from element or antenna 1. Obviously, that causes interference if the intensity is above  the acceptable level. Usually, isolation less than -20 dB is considered as good isolation for typical MIMO systems.   

Usually, transfer of power between antenna to antenna are measured in dB or decibel. It is a logarithmic scale. In our case it is 10*log(reflected power / total transmission power). Here base of the log is 10.



People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 📚 QPSK vs BPSK and QAM: A Comparison of Modulation Schemes in Wireless Communication 📚 Real-World Example 🧮 MATLAB Code 📚 Further Reading   QPSK provides twice the data rate compared to BPSK. However, the bit error rate (BER) is approximately the same as BPSK at low SNR values when gray coding is used. On the other hand, QPSK exhibits similar spectral efficiency to 4-QAM and 16-QAM under low SNR conditions. In very noisy channels, QPSK can sometimes achieve better spectral efficiency than 4-QAM or 16-QAM. In practical wireless communication scenarios, QPSK is commonly used along with QAM techniques, especially where adaptive modulation is applied. Modulation Bits/Symbol Points in Constellation Usage Notes BPSK 1 2 Very robust, used in weak signals QPSK 2 4 Balanced speed & reliability 4-QAM ...

DSB-SC Modulation and Demodulation

📘 Overview 🧮 DSB-SC Modulator 🧮 DSB-SC Detector 🧮 Comparisons Between DSB-SC and SSB-SC 🧮 Q & A and Summary 📚 Further Reading   Double-sideband suppressed-carrier transmission (DSB-SC) is transmission in which frequencies produced by amplitude modulation (AM) are symmetrically spaced above and below the carrier frequency and the carrier level is reduced to the lowest practical level, ideally being completely suppressed. In the DSB-SC modulation, unlike in AM, the wave carrier is not transmitted; thus, much of the power is distributed between the sidebands, which implies an increase of the cover in DSB-SC, compared to AM, for the same power use. DSB-SC transmission is a special case of double-sideband reduced carrier transmission. It is used for radio data systems. This model is frequently used in Amateur radio voice communications, especially on High-Frequency ba...