This tutorial walks through the derivation of the Equivalent Sensing Matrix and how the mmWave MIMO channel estimation problem can be expressed as a compressed sensing model. A numerical example is included for clarity.
The mmWave MIMO System Model
In a hybrid beamforming setup, the received signal is:
Where:
| Symbol | Meaning |
|---|---|
| \( P \) | Transmit power |
| \( \mathbf{W} = \mathbf{W}_{RF}\mathbf{W}_{BB} \) | Receiver hybrid combiner |
| \( \mathbf{F} = \mathbf{F}_{RF}\mathbf{F}_{BB} \) | Transmitter hybrid precoder |
| \( \mathbf{s} \) | Training / pilot vector |
| \( \tilde{\mathbf{n}} \) | Noise vector |
| \( \mathbf{H} \) | mmWave channel matrix |
Sparse Channel Representation
The physical mmWave channel can be expressed using array response matrices:
Where:
- \( \mathbf{A}_R \): receive array response matrix
- \( \mathbf{A}_T \): transmit array response matrix
- \( \mathbf{H}_b \): beamspace (sparse) channel matrix
The vectorized form is:
Substituting the Channel into the System Model
Vectorization using the Kronecker Product
We use the identity:
Applying this gives:
Substitute Hybrid Beamformers
Using \( \mathbf{F} = \mathbf{F}_{RF}\mathbf{F}_{BB} \) and \( \mathbf{W} = \mathbf{W}_{RF}\mathbf{W}_{BB} \):
Defining the Equivalent Sensing Matrix
We define:
Dimensions
In a practical example (from Prof. Jagannatham’s slides):
| Parameter | Value |
|---|---|
| \( N_T^{Beam} = N_R^{Beam} = 24 \) | \( 576 \) measurements |
| \( G = 32 \) | \( G^2 = 1024 \) unknowns |
So \( \mathbf{Q} \in \mathbb{C}^{576 \times 1024} \) — an underdetermined system.
Numerical Example (2×2 System)
Setup
| Quantity | Value |
|---|---|
| Transmit antennas \( N_T \) | 2 |
| Receive antennas \( N_R \) | 2 |
| Grid size \( G \) | 2 |
| Power \( P \) | 1 |
Channel Basis
Beamspace Channel
RF/Baseband Matrices
Compute Q
The transmit and receive terms each simplify to \( \sqrt{2}\mathbf{I}_2 \), giving:
Compute Output
If noise is added: \[ \mathbf{y} = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \tilde{\mathbf{n}} \]
Sparse Recovery
Since the system is underdetermined (\( 576 < 1024 \)), we use Compressed Sensing techniques to estimate \( \mathbf{h}_b \):
Algorithms:
- OMP (Orthogonal Matching Pursuit)
- Basis Pursuit / LASSO
- Sparse Bayesian Learning
Summary
| Step | Description |
|---|---|
| 1 | Start with \( \mathbf{y} = \sqrt{P}\mathbf{W}^H \mathbf{H}\mathbf{F}\mathbf{s} + \tilde{\mathbf{n}} \) |
| 2 | Express \( \mathbf{H} = \mathbf{A}_R \mathbf{H}_b \mathbf{A}_T^* \) |
| 3 | Vectorize using the Kronecker identity |
| 4 | Define the equivalent sensing matrix \( \mathbf{Q} \) |
| 5 | Obtain \( \mathbf{y} = \mathbf{Q}\mathbf{h}_b + \tilde{\mathbf{n}} \) |
| 6 | Estimate sparse \( \mathbf{h}_b \) using compressed sensing |
| 7 | Reconstruct full channel \( \mathbf{H} \) |