Skip to main content

FIR vs IIR Digital Filters and Recursive vs Non Recursive Filters


Key Features

  • The higher the order of a filter, the sharper the stopband transition
  • The sharpness of FIR and IIR filters is very different for the same order
  • A FIR filter has an equal time delay at all frequencies, while the IIR filter's time delay varies with frequency. Usually, the biggest time delay in the IIR filter is at the filter's cutoff frequency.
  • The term 'IR' (impulse response) is in both FIR and IIR. The term 'impulse response' refers to the appearance of the filter in the time domain.

1. What Is the Difference Between an FIR and an IIR Filters?

The two major classifications of digital filters used for signal filtration are FIR and IIR. The primary distinction between FIR and IIR filters is that the FIR filter provides a finite period impulse response. In contrast, IIR is a type of filter that produces an infinite-duration impulse response for a dynamic system.

Mathematical representation of a filter equation:

A*y(t) = c1*x(t) + c2*x(t - t0) + c3*x(t - t1) + c4*x(t - t2) + . . . + cn*x(t – tn)
    

To make A equal 1, we change the values of the coefficients c1, c2, c3, etc., in the filter equation above. We carry out this to recover the original signal from various multipath (with different delay spreads).

We concentrate on taps and the corresponding weights when designing filters. The filter converges for some weightings of various taps. Some filters function quickly, while others function precisely. Applications determine uses. FIR filters have a limited number of taps and generate a finite amount of impulses. IIR filters, on the other hand, can generate an infinite number of impulse responses despite having a finite number of taps.

Why do we use filters?

The purpose of the use of different kinds of filters is different. But in general, they all smoothen the noisy signal.

MATLAB Code for FIR Filter

In this MATLAB code, we use a FIR filter of order 20 to remove high-frequency noise from a clean sinusoidal signal. The highest frequency component in the sinusoidal signal is 500 Hz. We set the cutoff frequency of the FIR filter to 1000 Hz.

clc;
clear;

% Sampling parameters
Fs = 8000; % Sampling Frequency (Hz)
t = 0:1/Fs:0.1;

% Create a noisy signal
f_clean = 500;
f_noise = 3000;
signal_clean = sin(2*pi*f_clean*t);
signal_noise = 0.5 * sin(2*pi*f_noise*t);
signal = signal_clean + signal_noise;

% FIR Filter Design
N = 20;
fc = 1000;
wn = fc / (Fs/2);
b = fir1(N, wn, 'low', hamming(N+1));

filtered_signal = filter(b, 1, signal);

% Plot
figure;
subplot(3,1,1); plot(t, signal); title('Noisy Signal');
subplot(3,1,2); plot(t, filtered_signal); title('Filtered Signal');
subplot(3,1,3); plot(t, signal_clean); title('Original Clean Signal');
    

Search related filters

Output

MATLAB FIR filter output showing noisy, filtered, and original signals

2. Difference between recursive and non-recursive filters

The output of a recursive filter is directly dependent on one or more of its previous outputs. In a non-recursive filter, the output is independent of previous outputs, such as a feed-forward system with no feedback.

3. Solve: The impulse response of a filter is defined as h[n] =

Impulse response filter question diagram

Now tell us this filter is a 1. Non-recursive IIR filter 2. Recursive IIR filter 3. Non-recursive FIR filter 4. Recursive FIR filter

Answer: Option 3

Generally, an FIR filter has a finite number of impulse responses and the output is independent of previous outputs. Therefore, the correct answer is Non-recursive FIR filter.

Next Page >>

Read more about

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

Pulse Amplitude Modulation (PAM) & Demodulation 📘 Overview & Theory of Pulse Amplitude Modulation (PAM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal 🧮 Simulation Results for Comparison of PAM, PWM, PPM, DM, and PCM 📚 Further Reading 📂 Other Topics on Pulse Amplitude Modulation ... 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital Data 🧮 Other Pulse Modulation Techniques (PWM, PPM, DM, PCM) Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm = 10; % frequency of the message signal fc = 100; % frequency of the carrier signal fs = 100...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...

MATLAB Code for BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 🧮 MATLAB Codes 🧮 Online Simulator for Calculating BER of M-ary PSK and QAM 🧮 QPSK vs BPSK and QAM: A Comparison of Modulation Schemes in Wireless Communication 🧮 Are QPSK and 4-PSK same? 📚 Further Reading   QPSK offers double the data rate of BPSK while maintaining a similar bit error rate at low SNR when Gray coding is used. It shares spectral efficiency with 4-QAM and can outperform 4-QAM or 16-QAM in very noisy channels. QPSK is widely used in practical wireless systems, often alongside QAM in adaptive modulation schemes [Read more...] What is the Gray Code? Gray Code: Gray code is a binary numeral system where two successive values differ in only one bit. This property is called the single-bit difference or unit distance code. It is also known as reflected binary code. Let's convert binary 111 to Gray code: Binary bits: B = 1 1 1 Apply the rule: G[0] = B[0] = 1...