Skip to main content

FIR vs IIR Digital Filters and Recursive vs Non Recursive Filters



Key Features

  • The higher the order of a filter, the sharper the stopband transition 
  • The sharpness of FIR and IIR filters is very different for the same order 
  • A FIR filter has an equal time delay at all frequencies, while the IIR filter's time delay varies with frequency. Usually, the biggest time delay in the IIR filter is at the filter's cutoff frequency.
  • The term 'IR' (impulse response) is in both FIR and IIR. The term 'impulse response' refers to the appearance of the filter in the time domain. 

1. What Is the Difference Between an FIR and an IIR Filters?


The two major classifications of digital filters used for signal filtration are FIR and IIR. The primary distinction between FIR and IIR filters is that the FIR filter provides a finite period impulse response. In contrast, IIR is a type of filter that produces an infinite-duration impulse response for a dynamic system.

Mathematical representation of a filter equation:

A*y(t) = c1*x(t) + c2*x(t - t0) + c3*x(t - t1) + c4*x(t - t2) + . . . + cn*x(t – tn)

To make A equal 1, we change the values of the coefficients c1, c2, c3, etc., in the filter equation above. We carry out this to recover the original signal from various multipath (with different delay spreads).
We concentrate on taps and the corresponding weights when designing filters. The filter converges for some weightings of various taps. Some filters function quickly, while others function precisely. Applications determine uses. However, the uses for various filters vary. FIR filters have a limited number of taps. Simple FIR filters are linear by nature. Additionally, they generate a finite amount of impulses. IIR filters, on the other hand, can generate an infinite number of impulse responses despite having a finite number of taps since the


Why do we use filters?
The purpose of the use of different kinds of filters is different. But in general, they all smoothen the noisy signal. 
 

MATLAB Code for FIR Filter

In this MATLAB code, we use a FIR filter of order 20 to remove high-frequency noise from a clean sinusoidal signal. The highest frequency component in the sinusoidal signal is 500 Hz. We set the cutoff frequency of the FIR filter to 1000 Hz, so the filter attenuates all frequency components above 1000 Hz. As a result, we are able to recover the original message signal.
 
 
clc;
clear;

% Sampling parameters
Fs = 8000; % Sampling Frequency (Hz)
t = 0:1/Fs:0.1; % 1 second duration

% Create a noisy signal: clean sine wave + high-frequency noise
f_clean = 500; % Clean signal frequency (Hz)
f_noise = 3000; % Noise frequency (Hz)
signal_clean = sin(2*pi*f_clean*t);
signal_noise = 0.5 * sin(2*pi*f_noise*t);
signal = signal_clean + signal_noise;

% FIR Filter Design Parameters
N = 20; % Filter order (number of taps - 1)
fc = 1000; % Cutoff frequency (Hz)
wn = fc / (Fs/2); % Normalized cutoff frequency (0 to 1)

% Design the FIR filter using Hamming window
b = fir1(N, wn, 'low', hamming(N+1)); % 'low' => low-pass filter
% b is the filter coefficient vector

% Apply the FIR filter to the noisy signal
filtered_signal = filter(b, 1, signal);

% Plot the signals
figure;
subplot(3,1,1);
plot(t, signal);
title('Noisy Signal');
xlabel('Time (s)'); ylabel('Amplitude');

subplot(3,1,2);
plot(t, filtered_signal);
title('Filtered Signal (After FIR Low-Pass)');
xlabel('Time (s)'); ylabel('Amplitude');

subplot(3,1,3);
plot(t, signal_clean);
title('Original Clean Signal');
xlabel('Time (s)'); ylabel('Amplitude'); 
web('https://www.salimwireless.com/search?q=filter', '-browser');
 

Output 

 
 
 
 
 
 



2. Difference between recursive and non-recursive filters:


The output of a recursive filter is directly dependent on one or more of its previous outputs. However, in a non-recursive filter, the system used is one in which the output is independent of any previous outputs, such as a feed-forward system with no feedback. As a result, the filter is following a non-recursive system here.

3. Solve: The impulse response of a filter is defined as h[n] =




Now tell us this filter is a
1. Non-recursive IIR filter
2. Recursive IIR filter
3. Non-recursive FIR filter
4. Recursive FIR filter
Answer: Option 3

Generally, an FIR filter has a finite number of impulse responses or a finite period of impulse responses. In the case of FIR, the output is usually independent of the previous output. So, the correct answer to the above question is 'Non-recursive FIR filter,' or option 3.
Next Page>>

Read more about

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diffe...

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems clc; clear; close all; %% Parameters Nt = 4; % Transmit antennas Nr = 4; % Receive antennas (must be >= Nt for ZFBF) numBits = 1e4; % Number of bits per stream SNRdB = 0; % SNR in dB numRuns = 100; % Number of independent runs for averaging %% Precompute noise standard deviation noiseSigma = 10^(-SNRdB / 20); %% Accumulator for total errors totalErrors = 0; for run = 1:numRuns % Generate random bits: [4 x 10000] bits = randi([0 1], Nt, numBits); % BPSK modulation: 0 → +1, 1 → -1 txSymbols = 1 - 2 * bits; % Rayleigh channel matrix: [4 x 4] H = (randn(Nr, Nt) + 1j * randn(Nr, Nt)) / sqrt(2); %% === Zero Forcing Beamforming at Transmitter === W_zf = pinv(H); % Precoding matrix: [Nt x Nr] txPrecoded = W_zf * txSymbols; % Apply ZF precoding % Normalize transmit power (optional but useful) txPrecoded = txPrecoded / sqrt(mean(abs(txPrecoded(:)).^2)); %% Channel transmission with AWGN noise = noiseSigma * (randn(...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Understanding the Q...

Constellation Diagram of FSK in Detail

📘 Overview 🧮 Simulator for constellation diagram of FSK 🧮 Theory 🧮 MATLAB Code 📚 Further Reading   Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK) . Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel. Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'. Simulator for 2-FSK Constellation Diagram Simulator for 2-FSK Constellation Diagram SNR (dB): ...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); ...