Skip to main content

ML in Wireless Communication & Signal Processing


Machine Learning in Wireless Communication & Signal Processing

1. Channel Estimation & Equalization

Wireless channels change due to mobility, obstacles, and interference. Machine learning improves channel estimation:

  • Deep learning models learn nonlinear channel characteristics.
  • Works well in high-mobility scenarios (e.g., vehicular, satellite).
  • Outperforms traditional Least Squares (LS) and MMSE estimators in low SNR.

Applications: 5G MIMO-OFDM, Massive MIMO uplink/downlink, mmWave beam tracking.

2. Signal Detection & Demodulation

  • Neural networks replace or enhance traditional demodulation.
  • Autoencoders learn end-to-end modulation/demodulation.
  • Soft symbol detection using deep learning improves performance under hardware impairments, clipping, and phase noise.

3. Spectrum Sensing in Cognitive Radio

  • ML detects free spectrum bands dynamically.
  • Techniques: SVM, CNNs, LSTMs to classify primary user activity.
  • Applications: dynamic spectrum sharing, TV white space detection, 5G unlicensed bands.

4. Resource Allocation & Power Control

  • Optimizes power, spectrum, time slots, and antenna beams.
  • ML techniques: Deep Reinforcement Learning (DRL), Graph Neural Networks (GNNs).
  • Applications: 5G base station control, interference management, real-time MAC scheduling.

5. Beamforming and Massive MIMO

  • ML predicts optimal beams based on user location or radio maps.
  • Hybrid analog/digital beamforming and beam tracking for mobility.
  • Applications: mmWave 5G beam alignment, phased-array satellite communication.

6. Interference Detection & Cancellation

  • ML detects and classifies interference types (jamming, multiuser interference).
  • Autoencoder-based interference suppression, CNN-based modulation recognition.
  • Applications: multi-user detection, non-orthogonal multiple access (NOMA).

7. Wireless Network Optimization

  • Predicts traffic, manages handoff, detects anomalies.
  • Applications: self-organizing networks (SON), 5G core network optimization.

8. End-to-End Learning-Based Communication Systems

  • Treats the communication chain as a single neural network.
  • Autoencoder encodes (modulates) and decodes (demodulates) signals.
  • Applications: IoT low-power communication, optical communication.

9. Radar & Localization

  • ML assists in target classification, motion detection, and RF-based localization.
  • Applications: automotive radar, indoor localization, drone detection.

10. Audio & Speech Signal Processing

  • ML enhances noise cancellation, speech enhancement, and echo cancellation.
  • Applications: smartphones, VoIP, smart speakers.

Summary Table

Area ML Contribution Real-World Use
Channel EstimationDeep networks for nonlinear channel prediction5G, mmWave
Detection/DemodulationAutoencoders, CNNsOFDM receivers
Spectrum SensingClassification of primary vs secondary usersCognitive radio
Resource AllocationDRL optimizationBase station control
BeamformingPredictive beam selectionMassive MIMO
Interference ManagementML-based interference classificationDense networks
Network OptimizationTraffic forecasting, SON5G Core
End-to-End LearningNeural-coded communication systemsResearch / 6G
Radar / LocalizationRF-based detection and classificationAutomotive, drones
Audio Signal ProcessingDenoising, echo cancellationPhones, VoIP

Further Reading


People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagram of ASK in Detail

A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

UGC-NET Electronic Science Previous Year Question Papers with Answer Keys and Full Explanations

    UGC-NET Electronic Science Question Paper With Answer Key Download Pdf [2023] Download Question Paper               See Answers   2025 | 2024 | 2023 | 2022 | 2021 | 2020 UGC-NET Electronic Science  2023 Answers with Explanations Q.115 (A) It is an AC bridge to measure frequency True. The Wien bridge is an AC bridge used for accurate frequency measurement . (B) It is a DC bridge to measure amplitude False. Wien Bridge works with AC signals , not DC. (C) It is used as frequency determining element True. In Wien bridge oscillators, the RC network sets the oscillation frequency . (D) It is used as band-pass filter Partially misleading. The Wien bridge network acts like a band-pass filter in the oscillator, but the bridge itself is not typically described this way. Exam questions usually mark this as False . (E) It is used as notch filter False. That is the Wien NOTCH bridge ,...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to address this issue. It makes diversity app...