Skip to main content

Fourier Transform | Electronics Communication



Joseph Fourier discovered the Fourier transformation in the early 1800s. Fourier was a military scientist from France. The Fourier transform is a useful mathematical tool for obtaining the frequencies included in a time domain signal. Using the Fourier transform, we can rewrite every waveform as the sum of sine and cosine functions.


Continuous Time Fourier Transform (CTFT)

Fourier transform is a process to convert a spatial domain signal (i.e., time domain signal) into a frequency domain signal. Oppositely, the inverse Fourier transform is a process to convert the frequency domain signal to the primary time domain signal.

Notation of CTFT

Let x(t) be a continuous-time signal. Then the CTFT is defined as:

\( X(j\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} \, dt \)

Where:

  • \( \omega \) is the angular frequency in radians/second.
  • \( X(j\omega) \) is the frequency-domain representation of \( x(t) \).
  • The transform assumes signals are absolutely integrable over time.

Inverse CTFT:

To reconstruct x(t) from its CTFT:

\( x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \cdot e^{j\omega t} \, d\omega \)


Discrete Time Fourier Transform (DTFT)

The Discrete-Time Fourier Transform (DTFT) is used to analyze discrete-time signals, i.e., signals that are defined only at discrete intervals of time (like samples from an analog signal). These arise naturally in digital signal processing because all digital devices (computers, DSPs) process data in discrete form.

Notation of DTFT

Let x[n] be a discrete-time signal. Then the DTFT is defined as:

\( X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j\omega n} \)

Where:

  • \( \omega \) is the angular frequency in radians/sample.
  • \( e^{j\omega} \) represents the frequency-domain variable on the unit circle.
  • \( X(e^{j\omega}) \) is periodic with period \( 2\pi \).

Inverse DTFT:

To reconstruct x[n] from its DTFT:

\( x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) \cdot e^{j\omega n} d\omega \)

Properties of Continuous Time Fourier Transform (CTFT)

Linearity

The Fourier Transform satisfies the property of linearity (superposition).

Consider two signals \( x_1(t) \) and \( x_2(t) \) with Fourier Transforms:

\( \mathcal{F}\{x_1(t)\} = X_1(j\omega), \quad \mathcal{F}\{x_2(t)\} = X_2(j\omega) \)

Then for any constants \( a_1 \) and \( a_2 \), we have:

\( \mathcal{F}\{a_1 x_1(t) + a_2 x_2(t)\} = a_1 X_1(j\omega) + a_2 X_2(j\omega) \)

Scaling

If \( \mathcal{F}\{x(t)\} = X(j\omega) \), and \( a \) is a real constant, then:

\( \mathcal{F}\{x(at)\} = \frac{1}{|a|} X\left(\frac{j\omega}{a}\right) \)

Symmetry

If \( x(t) \) is real and even, then the Fourier Transform satisfies:

\( X(j\omega) = X^*(-j\omega) \)

If \( x(t) \) is real and odd, then:

\( X(j\omega) = -X^*(-j\omega) \)

Convolution

Fourier Transform converts the convolution of two signals in time domain into the multiplication of their transforms in frequency domain.

Time Domain Convolution

If \( F(x_1(t)) = X_1(\omega) \) and \( F(x_2(t)) = X_2(\omega) \), then:

\( F(x_1(t) * x_2(t)) = X_1(\omega) \cdot X_2(\omega) \quad \text{(‘*’ denotes convolution)} \)

Frequency Domain Convolution

If \( F(x_1(t)) = X_1(\omega) \), \( F(x_2(t)) = X_2(\omega) \), then:

\( F(x_1(t) \cdot x_2(t)) = \frac{1}{2\pi} X_1(\omega) * X_2(\omega) \quad \text{(‘*’ denotes convolution)} \)

Shifting Property

\( \mathcal{F}\{x(t - t_0)\} = e^{-j\omega t_0} X(\omega) \)

As a consequence, time shifting affects only the phase, leaving the magnitude spectrum \( |X(\omega)|^2 \) unchanged.

Duality

Duality states that if \( x(t) \leftrightarrow X(\omega) \), then the roles of time and frequency can be interchanged.

\( \mathcal{F}\{X(t)\} = 2\pi x(-\omega) \)

Differentiation

The Fourier Transform of the derivative of a signal corresponds to multiplication by \( j\omega \) in the frequency domain:

\( \mathcal{F} \left\{ \frac{d}{dt}x(t) \right\} = j\omega X(\omega) \)

Integration

Integration in the time domain corresponds to division by \( j\omega \) in the frequency domain:

\( \mathcal{F}\left\{\int_{-\infty}^{t} x(\tau) \, d\tau \right\} = \frac{X(\omega)}{j\omega} \)

Time Reversal

If \( x(t) \leftrightarrow X(\omega) \), then the Fourier Transform of \( x(-t) \) is \( X(-\omega) \). This means that time reversal corresponds to the reversal of the frequency spectrum in the frequency domain.


Applications of Fourier Transform

Fourier transform is used in circuit analysis, signal analysis, cell phones, image analysis, signal processing, and LTI systems. The Fourier transform is most probably the best tool to find the frequency in an entire field. This makes it a useful tool for LTI systems and signal processing. Partial differential equations reduce to ordinary differential equations in Fourier Transform.
 

Fourier Transform Chapters

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

OFDM Symbols and Subcarriers Explained

This article explains how OFDM (Orthogonal Frequency Division Multiplexing) symbols and subcarriers work. It covers modulation, mapping symbols to subcarriers, subcarrier frequency spacing, IFFT synthesis, cyclic prefix, and transmission. Step 1: Modulation First, modulate the input bitstream. For example, with 16-QAM , each group of 4 bits maps to one QAM symbol. Suppose we generate a sequence of QAM symbols: s0, s1, s2, s3, s4, s5, …, s63 Step 2: Mapping Symbols to Subcarriers Assume N sub = 8 subcarriers. Each OFDM symbol in the frequency domain contains 8 QAM symbols (one per subcarrier): Mapping (example) OFDM symbol 1 → s0, s1, s2, s3, s4, s5, s6, s7 OFDM symbol 2 → s8, s9, s10, s11, s12, s13, s14, s15 … OFDM sym...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Bartlett Method in MATLAB

Steps to calculate Spectral power density using Bartlett Method 'M' is the length of each segment for the Bartlett method, set to 100 samples. 'K' is the number of segments obtained by dividing the total number of samples N by the segment length 'M'. psd_bartlett_broadband is initialized to store the accumulated periodogram. For each segment k, x_k extracts the k-th segment of the broadband signal. P_k computes the periodogram of the k-th segment using the FFT. The periodograms are accumulated and averaged over all segments. The PSD is plotted in dB/Hz by converting the power values to decibels using 10 * log10.   MATLAB Script clc; clear; close all; % Parameters fs = 1000; % Sampling frequency t = 0:1/fs:1-1/fs; % Time vector N = length(t); % Number of samples % Generate synthetic broadband ARMA process arma_order = [2, 2]; % ARMA(p,q) order a = [1, -0.75, 0....

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Question With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Question With Answer Key Download Pdf [December 2019] UGC Net Elec...