Skip to main content

Fourier Transform | Electronics Communication



Joseph Fourier discovered the Fourier transformation in the early 1800s. Fourier was a military scientist from France. The Fourier transform is a useful mathematical tool for obtaining the frequencies included in a time domain signal. Using the Fourier transform, we can rewrite every waveform as the sum of sine and cosine functions.


Continuous Time Fourier Transform (CTFT)

Fourier transform is a process to convert a spatial domain signal (i.e., time domain signal) into a frequency domain signal. Oppositely, the inverse Fourier transform is a process to convert the frequency domain signal to the primary time domain signal.

Notation of CTFT

Let x(t) be a continuous-time signal. Then the CTFT is defined as:

\( X(j\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} \, dt \)

Where:

  • \( \omega \) is the angular frequency in radians/second.
  • \( X(j\omega) \) is the frequency-domain representation of \( x(t) \).
  • The transform assumes signals are absolutely integrable over time.

Inverse CTFT:

To reconstruct x(t) from its CTFT:

\( x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \cdot e^{j\omega t} \, d\omega \)


Discrete Time Fourier Transform (DTFT)

The Discrete-Time Fourier Transform (DTFT) is used to analyze discrete-time signals, i.e., signals that are defined only at discrete intervals of time (like samples from an analog signal). These arise naturally in digital signal processing because all digital devices (computers, DSPs) process data in discrete form.

Notation of DTFT

Let x[n] be a discrete-time signal. Then the DTFT is defined as:

\( X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j\omega n} \)

Where:

  • \( \omega \) is the angular frequency in radians/sample.
  • \( e^{j\omega} \) represents the frequency-domain variable on the unit circle.
  • \( X(e^{j\omega}) \) is periodic with period \( 2\pi \).

Inverse DTFT:

To reconstruct x[n] from its DTFT:

\( x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) \cdot e^{j\omega n} d\omega \)

Properties of Continuous Time Fourier Transform (CTFT)

Linearity

The Fourier Transform satisfies the property of linearity (superposition).

Consider two signals \( x_1(t) \) and \( x_2(t) \) with Fourier Transforms:

\( \mathcal{F}\{x_1(t)\} = X_1(j\omega), \quad \mathcal{F}\{x_2(t)\} = X_2(j\omega) \)

Then for any constants \( a_1 \) and \( a_2 \), we have:

\( \mathcal{F}\{a_1 x_1(t) + a_2 x_2(t)\} = a_1 X_1(j\omega) + a_2 X_2(j\omega) \)

Scaling

If \( \mathcal{F}\{x(t)\} = X(j\omega) \), and \( a \) is a real constant, then:

\( \mathcal{F}\{x(at)\} = \frac{1}{|a|} X\left(\frac{j\omega}{a}\right) \)

Symmetry

If \( x(t) \) is real and even, then the Fourier Transform satisfies:

\( X(j\omega) = X^*(-j\omega) \)

If \( x(t) \) is real and odd, then:

\( X(j\omega) = -X^*(-j\omega) \)

Convolution

Fourier Transform converts the convolution of two signals in time domain into the multiplication of their transforms in frequency domain.

Time Domain Convolution

If \( F(x_1(t)) = X_1(\omega) \) and \( F(x_2(t)) = X_2(\omega) \), then:

\( F(x_1(t) * x_2(t)) = X_1(\omega) \cdot X_2(\omega) \quad \text{(‘*’ denotes convolution)} \)

Frequency Domain Convolution

If \( F(x_1(t)) = X_1(\omega) \), \( F(x_2(t)) = X_2(\omega) \), then:

\( F(x_1(t) \cdot x_2(t)) = \frac{1}{2\pi} X_1(\omega) * X_2(\omega) \quad \text{(‘*’ denotes convolution)} \)

Shifting Property

\( \mathcal{F}\{x(t - t_0)\} = e^{-j\omega t_0} X(\omega) \)

As a consequence, time shifting affects only the phase, leaving the magnitude spectrum \( |X(\omega)|^2 \) unchanged.

Duality

Duality states that if \( x(t) \leftrightarrow X(\omega) \), then the roles of time and frequency can be interchanged.

\( \mathcal{F}\{X(t)\} = 2\pi x(-\omega) \)

Differentiation

The Fourier Transform of the derivative of a signal corresponds to multiplication by \( j\omega \) in the frequency domain:

\( \mathcal{F} \left\{ \frac{d}{dt}x(t) \right\} = j\omega X(\omega) \)

Integration

Integration in the time domain corresponds to division by \( j\omega \) in the frequency domain:

\( \mathcal{F}\left\{\int_{-\infty}^{t} x(\tau) \, d\tau \right\} = \frac{X(\omega)}{j\omega} \)

Time Reversal

If \( x(t) \leftrightarrow X(\omega) \), then the Fourier Transform of \( x(-t) \) is \( X(-\omega) \). This means that time reversal corresponds to the reversal of the frequency spectrum in the frequency domain.


Applications of Fourier Transform

Fourier transform is used in circuit analysis, signal analysis, cell phones, image analysis, signal processing, and LTI systems. The Fourier transform is most probably the best tool to find the frequency in an entire field. This makes it a useful tool for LTI systems and signal processing. Partial differential equations reduce to ordinary differential equations in Fourier Transform.
 

Fourier Transform Chapters

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Periodogram in MATLAB

Power Spectral Density Estimation Using the Periodogram Step 1: Signal Representation Let the signal be x[n] , where: n = 0, 1, ..., N-1 (discrete-time indices), N is the total number of samples. Step 2: Compute the Discrete-Time Fourier Transform (DTFT) The DTFT of x[n] is: X(f) = ∑ x[n] e -j2Ï€fn For practical computation, the Discrete Fourier Transform (DFT) is used: X[k] = ∑ x[n] e -j(2Ï€/N)kn , k = 0, 1, ..., N-1 k represents discrete frequency bins, f_k = k/N * f_s , where f_s is the sampling frequency. Step 3: Compute Power Spectral Density (PSD) The periodogram estimates the PSD as: S_x(f_k) = (1/N) |X[k]|² S_x(f_k) ...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024]  UGC Net Paper 1 With Answer Key Download Pdf [Sep 2024] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [Sep 2024]  UGC Net Paper 1 With Answer Key Download Pdf [June 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] ...