Skip to main content

Frequently Asked Questions about 5G | 1G to 5G, Side Effects, Modulation ...


Following questions were raised by anonymous website visitors or readers to the online publishers. We'll check up a few queries among them below.


Reason behind change in network upgradation from 1g to 5g?

In a nutshell, the answer to this issue is that bandwidth demands are increasing. The bandwidth allotted to a specific service, for example, is fixed. Now, if the number of devices linked to the internet is growing by the day, what would you do to meet the increasing bandwidth demand? As a result, every few decades, a whole new G (or generation in cellular wireless communication) appears to meet the required requirements. Read More ...


Does my PDA support 5g?

It is entirely dependent on the mobile or cell phone's operational frequency band. More specifically, the frequency band that your mobile antenna receives or broadcasts is determined by your antenna.


Can a CSE can study 5g courses?

Prerequisites to pursuing a 5G course:

You must have some good understanding in previous G's especially in Telecommunication to pursue a 5G course. Here concept of cell, operating frequency, infrastructure all are different as compare to 3G or 4G network. The key technologies to enable 5G are

You must have basic knowledge about wireless channel model, modulation schemes used in 3G and 4G, antennas used in those technologies, etc. to make yourself fit for pursuing a course on 5GMIMO Technology, SVD, etc.Basic knowledge on UWB or millimeter wave is a big plus for that.


What additional benefits may you expect if you have a background in computer science or engineering?

Machine learning (ML) and artificial intelligence (AI) are becoming increasingly important as we advance in technology. Python is a great programming language for machine learning and artificial intelligence. It is a significant benefit if you have a thorough understanding of programming languages, particularly Python. Deep Learning (DL) is a common tool in 5G simulation, bandwidth allocation, beamforming, and channel estimation, among other applications.

It is now entirely up to you whether or if you are interested in 5G courses. We recommend that you have a fundamental understanding of telecommunications, including prior G's such as 3G and 4G, operating frequencies, used modulation or multiplexing techniques, MIMO technologies, and so on.


Any side effects of 5g cables overhead my house

No


Any side effects of 5g cell tower around my house

In reality, cell towers emit radiation at a level that is safe for humans . Only when you receive a call or your signal level on the screen drops below, the cell tower provide more power to your phone. However, that power is also below the standard of safety. According to experts, this is unlikely to cause harm. You may be aware that the transmitted power from cell towers or access points (APs) in 5G communication will be lower than in 3G or 4G.


What are the clusters and side lobes?

A. We usually discuss the term 'time cluster' or 'cluster' in case of extremely high frequency communication system. Where signal gets reflected and refracted multiple times in environment due to very high frequency. When signal (MPCs) come to receiver and they are close in time then they form cluster. Technically, they are (MPCs) close in time in spatial domain.

While reading any chapter on beamforming, you may come across the terms 'main lobe' and' side lobe.' In this case, side lobes are a group of MPCs that are close in angle in terms of AOA (angle of arrival) or AOD (angle of departure) (angle of departure). Continue Reading ...


Which modulation techniques are used in 5G?

A. OFDM, NOMA


What is millimeter wave technology?

A. Millimeter wave band with huge potentiality like -- huge bandwidth resource and ultra low latency properties which is a most suitable candidate to enable millimeter wave 5G communication. Although, most countries are still using sub 6 GHz band for 5G networks. Due to extremely high frequency it's wavelength spans between 10 millimeter to 1 millimeter, so it is termed as 'Millimeter Wave'.


What companies develop 5g antennas?

A. Laird is one of them.


What is the difference between 1g and 5g in switching technique in DCC?


Internet of Things (IOTs)


How is career in IOT?

A. IoT professionals have a bright future. Almost every person will use IoTs, sensors, and wearables for their daily requirements in the near future. It can be used in a variety of businesses, from home appliances to heavy industries. Hospitals, fleet management, traffic control, smart cities, and other applications can all benefit from it. Read more...


Which workshop is better for CSE students either IOT or robotics?

IOT based solar panel enabled extension box
The compact sensors with IOT is going to make huge impact in patients Life
What are the types of interfaces additional required for connecting IOT devices in plug and play mode?

Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 📚 QPSK vs BPSK and QAM: A Comparison of Modulation Schemes in Wireless Communication 📚 Real-World Example 🧮 MATLAB Code 📚 Further Reading   QPSK provides twice the data rate compared to BPSK. However, the bit error rate (BER) is approximately the same as BPSK at low SNR values when gray coding is used. On the other hand, QPSK exhibits similar spectral efficiency to 4-QAM and 16-QAM under low SNR conditions. In very noisy channels, QPSK can sometimes achieve better spectral efficiency than 4-QAM or 16-QAM. In practical wireless communication scenarios, QPSK is commonly used along with QAM techniques, especially where adaptive modulation is applied. Modulation Bits/Symbol Points in Constellation Usage Notes BPSK 1 2 Very robust, used in weak signals QPSK 2 4 Balanced speed & reliability 4-QAM ...

DSB-SC Modulation and Demodulation

📘 Overview 🧮 DSB-SC Modulator 🧮 DSB-SC Detector 🧮 Comparisons Between DSB-SC and SSB-SC 🧮 Q & A and Summary 📚 Further Reading   Double-sideband suppressed-carrier transmission (DSB-SC) is transmission in which frequencies produced by amplitude modulation (AM) are symmetrically spaced above and below the carrier frequency and the carrier level is reduced to the lowest practical level, ideally being completely suppressed. In the DSB-SC modulation, unlike in AM, the wave carrier is not transmitted; thus, much of the power is distributed between the sidebands, which implies an increase of the cover in DSB-SC, compared to AM, for the same power use. DSB-SC transmission is a special case of double-sideband reduced carrier transmission. It is used for radio data systems. This model is frequently used in Amateur radio voice communications, especially on High-Frequency ba...