Skip to main content

Frequently Asked Questions about 5G | 1G to 5G, Side Effects, Modulation ...


Following questions were raised by anonymous website visitors or readers to the online publishers. We'll check up a few queries among them below.


Reason behind change in network upgradation from 1g to 5g?

In a nutshell, the answer to this issue is that bandwidth demands are increasing. The bandwidth allotted to a specific service, for example, is fixed. Now, if the number of devices linked to the internet is growing by the day, what would you do to meet the increasing bandwidth demand? As a result, every few decades, a whole new G (or generation in cellular wireless communication) appears to meet the required requirements. Read More ...


Does my PDA support 5g?

It is entirely dependent on the mobile or cell phone's operational frequency band. More specifically, the frequency band that your mobile antenna receives or broadcasts is determined by your antenna.


Can a CSE can study 5g courses?

Prerequisites to pursuing a 5G course:

You must have some good understanding in previous G's especially in Telecommunication to pursue a 5G course. Here concept of cell, operating frequency, infrastructure all are different as compare to 3G or 4G network. The key technologies to enable 5G are

You must have basic knowledge about wireless channel model, modulation schemes used in 3G and 4G, antennas used in those technologies, etc. to make yourself fit for pursuing a course on 5GMIMO Technology, SVD, etc.Basic knowledge on UWB or millimeter wave is a big plus for that.


What additional benefits may you expect if you have a background in computer science or engineering?

Machine learning (ML) and artificial intelligence (AI) are becoming increasingly important as we advance in technology. Python is a great programming language for machine learning and artificial intelligence. It is a significant benefit if you have a thorough understanding of programming languages, particularly Python. Deep Learning (DL) is a common tool in 5G simulation, bandwidth allocation, beamforming, and channel estimation, among other applications.

It is now entirely up to you whether or if you are interested in 5G courses. We recommend that you have a fundamental understanding of telecommunications, including prior G's such as 3G and 4G, operating frequencies, used modulation or multiplexing techniques, MIMO technologies, and so on.


Any side effects of 5g cables overhead my house

No


Any side effects of 5g cell tower around my house

In reality, cell towers emit radiation at a level that is safe for humans . Only when you receive a call or your signal level on the screen drops below, the cell tower provide more power to your phone. However, that power is also below the standard of safety. According to experts, this is unlikely to cause harm. You may be aware that the transmitted power from cell towers or access points (APs) in 5G communication will be lower than in 3G or 4G.


What are the clusters and side lobes?

A. We usually discuss the term 'time cluster' or 'cluster' in case of extremely high frequency communication system. Where signal gets reflected and refracted multiple times in environment due to very high frequency. When signal (MPCs) come to receiver and they are close in time then they form cluster. Technically, they are (MPCs) close in time in spatial domain.

While reading any chapter on beamforming, you may come across the terms 'main lobe' and' side lobe.' In this case, side lobes are a group of MPCs that are close in angle in terms of AOA (angle of arrival) or AOD (angle of departure) (angle of departure). Continue Reading ...


Which modulation techniques are used in 5G?

A. OFDM, NOMA


What is millimeter wave technology?

A. Millimeter wave band with huge potentiality like -- huge bandwidth resource and ultra low latency properties which is a most suitable candidate to enable millimeter wave 5G communication. Although, most countries are still using sub 6 GHz band for 5G networks. Due to extremely high frequency it's wavelength spans between 10 millimeter to 1 millimeter, so it is termed as 'Millimeter Wave'.


What companies develop 5g antennas?

A. Laird is one of them.


What is the difference between 1g and 5g in switching technique in DCC?


Internet of Things (IOTs)


How is career in IOT?

A. IoT professionals have a bright future. Almost every person will use IoTs, sensors, and wearables for their daily requirements in the near future. It can be used in a variety of businesses, from home appliances to heavy industries. Hospitals, fleet management, traffic control, smart cities, and other applications can all benefit from it. Read more...


Which workshop is better for CSE students either IOT or robotics?

IOT based solar panel enabled extension box
The compact sensors with IOT is going to make huge impact in patients Life
What are the types of interfaces additional required for connecting IOT devices in plug and play mode?

Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

 Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence into an MSK-modulated signal % Inputs: % bits - Binary input sequence % carrierFreq - Carri...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add AWGN Noise Modulation Type BPSK BFSK ...

Fundamentals of Channel Estimation

Channel Estimation Techniques Channel Estimation is an auto-regressive process that may be performed with a number of iterations. There are commonly three types of channel estimation approaches. 1. Pilot estimation  2. Blind estimation  3. Semi-blind estimation. For Channel Estimation,  CIR [↗] is used. The amplitudes of the impulses decrease over time and are not correlated. For example, y(n) = h(n) * x(n) + w(n) where y(n) is the received signal, x(n) is the sent signal, and w(n) is the additive white gaussian noise At the next stage, h(n+1) = a*h(n) + w(n) The channel coefficient will be modified as stated above at the subsequent stage. The scaling factor "a" determines the impulse's amplitude, whereas "h(n+1)" represents the channel coefficient at the following stage. Pilot Estimation Method To understand how a communication medium is currently behaving, a channel estimate is necessary. In order to monitor a channel's behavior in practice communication ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Constellation Diagram of FSK in Detail

  Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK) . Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel. Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'. Simulator for 2-FSK Constellation Diagram Simulator for 2-FSK Constellation Diagram SNR (dB): 15 Add AWGN Noise Run Simulation ...

MATLAB Code for QAM (Quadrature Amplitude Modulation)

📘 Overview of QAM 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 📚 Further Reading   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need 2 bits once to represent four constellation points % QAM modulation is the combina...