Skip to main content

Frequently Asked Questions about 5G | 1G to 5G, Side Effects, Modulation ...


5G Technology Questions and Answers

Following questions were raised by anonymous website visitors or readers to the online publishers. We'll check up a few queries among them below.

General 5G Questions

Reason behind change in network upgradation from 1G to 5G?

In a nutshell, the answer to this issue is that bandwidth demands are increasing. The bandwidth allotted to a specific service, for example, is fixed. Now, if the number of devices linked to the internet is growing by the day, what would you do to meet the increasing bandwidth demand?

As a result, every few decades, a whole new G (or generation in cellular wireless communication) appears to meet the required requirements. Read More ...

Does my PDA support 5G?

It is entirely dependent on the mobile or cell phone's operational frequency band. More specifically, the frequency band that your mobile antenna receives or broadcasts is determined by your antenna.

Can a CSE study 5G courses?

Prerequisites to pursuing a 5G course:

You must have some good understanding in previous G's especially in Telecommunication to pursue a 5G course. Here concept of cell, operating frequency, infrastructure all are different as compare to 3G or 4G network.

You must have basic knowledge about wireless channel model, modulation schemes used in 3G and 4G, antennas used in those technologies, etc. Knowledge on 5G MIMO Technology, SVD, UWB or millimeter wave is a big plus.

Any side effects of 5G cables overhead my house?

No

Any side effects of 5G cell tower around my house?

In reality, cell towers emit radiation at a level that is safe for humans. Only when you receive a call or your signal level drops, the cell tower provides more power to your phone. However, that power is also below the standard of safety.

5G Signal Processing & Technical Concepts

1) What waveform is used in 5G NR and why?

5G NR primarily uses CP-OFDM for both uplink and downlink.

  • Handles multipath fading efficiently
  • Supports high data rates
  • Flexible numerology

In uplink, DFT-s-OFDM is used to reduce PAPR.

2) What is Numerology in 5G?

Subcarrier spacing formula:

Δf = 15 × 2^Îŧ kHz

Îŧ = 0,1,2,3,4

3) Massive MIMO

Massive MIMO uses large antenna arrays (e.g., 64, 128 antennas).

  • Beamforming gain
  • Spatial multiplexing
  • Increased capacity

4) Beamforming

Beamforming focuses signal energy in a specific direction using antenna arrays.

y = w^H x

5) Channel Estimation in 5G

  • DMRS
  • SRS
  • CSI-RS
H(k) = Y(k) / X(k)

6) PAPR

PAPR = max|x(t)|² / E[|x(t)|²]

7) LDPC and Polar Codes

  • LDPC – Data channels
  • Polar Codes – Control channels

8) LTE vs 5G Comparison

Feature LTE 5G
Numerology Fixed 15 kHz Scalable
Coding Turbo LDPC + Polar
MIMO Up to 8x8 Massive MIMO

9) What is mmWave?

Millimeter wave band provides huge bandwidth and ultra-low latency. Wavelength spans between 10 millimeter to 1 millimeter.

10) Role of FFT in 5G

  • Demodulation
  • Equalization
  • Channel estimation

Internet of Things (IoT)

How is career in IoT?

IoT professionals have a bright future. It can be used in home appliances, industries, hospitals, fleet management, traffic control, smart cities and more. Read more...

Which workshop is better for CSE students either IoT or robotics?

IOT based solar panel enabled extension box

The compact sensors with IOT is going to make huge impact in patients life

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ī„) dĪ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ī€)) ∫ₓ∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Wireless Communication Interview Questions | Page 2

Wireless Communication Interview Questions Page 1 | Page 2| Page 3| Page 4| Page 5   Digital Communication (Modulation Techniques, etc.) Importance of digital communication in competitive exams and core industries Q. What is coherence bandwidth? A. See the answer Q. What is flat fading and slow fading? A. See the answer . Q. What is a constellation diagram? Q. One application of QAM A. 802.11 (Wi-Fi) Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc. A.  Click here Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM? A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on  "Modulation Techniques" . Q.  Real-life application of QPSK modulation and demodulation Q. What is  OFDM?  Why do we use it? Q. What is the Cyclic prefix in OFDM?   Q. In a c...

MATLAB code for Pulse Code Modulation (PCM) and Demodulation

📘 Overview & Theory 🧮 Quantization in Pulse Code Modulation (PCM) 🧮 MATLAB Code for Pulse Code Modulation (PCM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading MATLAB Code for Pulse Code Modulation clc; close all; clear all; fm=input('Enter the message frequency (in Hz): '); fs=input('Enter the sampling frequency (in Hz): '); L=input('Enter the number of the quantization levels: '); n = log2(L); t=0:1/fs:1; % fs nuber of samples have tobe selected s=8*sin(2*pi*fm*t); subplot(3,1,1); t=0:1/(length(s)-1):1; plot(t,s); title('Analog Signal'); ylabel('Amplitude--->'); xlabel('Time--->'); subplot(3,1,2); stem(t,s);grid on; title('Sampled Sinal'); ylabel('Amplitude--->'); xlabel('Time--->'); % Quantization Process vmax=8; vmin=-vmax; %to quanti...