Skip to main content

C++ Programming


How to run C++ program on your computer

To run any programming language on your local machine or computer you need a compiler first. The compiler reads each and every line of your program. It interprets line by line actually. If there is no error in the program, they only go ahead to run your particular program. In our case, we are using the "DEV C++" compiler to run our programs. You can easily download and install the "DEV C++ application file" or .exe file from the internet.


How to save C++ files on your computer

You simply go to your "DEV C++" and then click on "new" in the file section in the upper tabs. Then save the file adding the ".cpp" extension. For example, if your program name is "myfirstprogram" then save it as "myfirstprogram. cpp". 


Hello World program in C++

#include <iostream> 
using namespace std;           // it calls the library
int main() {                         // it defines the method main()
cout << "Hello World!";  // 'cout' is used for printing
return 0;                             // it returns only one value
}


Result

Hello World!


In the above program, "using namespace std;" calls a library that has a set of signs that are used to identify and refer to objects of various kinds. Here in the 3rd line main() is a method. 



How To Add Comments in C++ Programming

To add comments in C++ Programming you need to write "//", then write your comment. 

For Example

#include <iostream>

using namespace std;

int main() {

int x = 22; //declaring of variable x

if (x >= 10) {

cout << "It is true";

}

else {

cout << "It is false";

}

/* 

It is a comment on multiple lines

If...else is used for adding conditions in C programming

*/

return 0;

}


Here, in the above code single line comment is written after "//". But if comments contain multiple lines then we use "/* Your Comment of multiple lines */" as shown in the above code.



Declaring of Variable in C++

In all programming languages, we declare some variable for specific purposes.


#include <iostream>

using namespace std;

int main() {

  int x = 5;

  int y = 10;

  int sum = x + y;

  cout << "Value of x + y = " << sum;

}


Result

Value of x + y = 15


Here in the above code, we've declared two variables x = 5, and y=10.



'Else If' Condition in C++ Programming

#include <iostream>

using namespace std;

int main() {

  int product;

  cout << "Enter the number of product: ";

  cin >> product; 

  if (product < 500) {

    cout << "Total price = " << product*20;

  } else if (product >= 500 && product < 1000) {

    cout << "Total price = " << product*18;

  } else {

    cout << "Total price = " << product*15;

  }

  return 0;

}


Result

Enter the number of products: 400

Total price = 8000


We implemented three different conditions for an e-commerce application for the wholesale market in the code above. If you buy less than 500 items, you'll have to pay $20 for each one. If you buy more than 500 but fewer than 1000 units, you pay 18 dollars for each unit. The third condition is that if you purchase more than 1000 items, you will be charged $15 for each item.

 

While For - Loop in C++ Programming


We often need to run a loop inside a program to run several iterations and impose many logics, conditions, etc. 


Example

In a school sport, a group of three pupils will compete in a three-round running race. After each round, you must record the time taken by each student. Calculate the average time taken by each student over the three rounds once they have completed all of the rounds, and choose the student with the lowest average timing as the best runner. If more than one student meets the minimum average timing criteria, they must all be chosen. Show the fastest runner's name and average timing.


Solution in C++

Inputs:

The time taken by three students over three rounds to complete a 100-meter run is as follows

Student A: 8, 9, 9 (in second)

Student B: 9, 8, 12 (in second)

Student C: 7, 11, 9 (in second)

Condition:

All students will be judged unfit if they fail to maintain an average timing of 12 seconds over the three rounds, or if the time average taken by all students is greater than 12 seconds.

The input of the code is below:

8

9

7

9

8

11

9

12

9

Code:

#include <iostream>

#include <cmath>

using namespace std;

int main() {

int x, T1=0, T2=0, T3=0, count=1;

double A1, A2, A3;

while (count <=9)

{

cin >> x;

if(count%3==1)

T1=T1+x;

else if(count%3==2)

T2=T2+x;

else

T3=T3+x;

count++;

}

A1= (T1/3);

A2= (T2/3);

A3= (T3/3); 

if(A1>=12 && A2>=12 && A3>=12) {

cout<<"All trainees are unfit";

return 0;

}

if(A1<=A2 && A1<=A3){

cout<<"Student A"<<endl;

}

if(A2<=A1 && A2<=A3){

cout<<"Student B"<<endl;

}

if(A3<=A1 && A3<=A2){

cout<<"Student C"<<endl;

}

return 0;

}

Result:

Student A


We can say Student A takes less average time to cover 3 rounds of 100 meters runs.


 

Solve the following C Programs

#include<stdio.h>
int main() {
int a=2,b=2;
a=b<<a;
printf("%d", a);
return 0;
}


Output: 8


Explanation:

Operator "<<" denotes the left shifting of bits and operator ">>" denotes the right shifting of bits.

So, here operation occurs in bit level

b = 2 = binary 10; If we shift bits in the left direction by 2 places then it will be 1000 which is equal to decimal 8

So, the output will be 8 in the above code.

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagram of ASK in Detail

A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

UGC-NET Electronic Science Previous Year Question Papers with Answer Keys and Full Explanations

    UGC-NET Electronic Science Question Paper With Answer Key Download Pdf [2023] Download Question Paper               See Answers   2025 | 2024 | 2023 | 2022 | 2021 | 2020 UGC-NET Electronic Science  2023 Answers with Explanations Q.115 (A) It is an AC bridge to measure frequency True. The Wien bridge is an AC bridge used for accurate frequency measurement . (B) It is a DC bridge to measure amplitude False. Wien Bridge works with AC signals , not DC. (C) It is used as frequency determining element True. In Wien bridge oscillators, the RC network sets the oscillation frequency . (D) It is used as band-pass filter Partially misleading. The Wien bridge network acts like a band-pass filter in the oscillator, but the bridge itself is not typically described this way. Exam questions usually mark this as False . (E) It is used as notch filter False. That is the Wien NOTCH bridge ,...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to address this issue. It makes diversity app...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...