Skip to main content

DSB-SC Modulation and Demodulation


 

Double-sideband suppressed-carrier transmission (DSB-SC) is transmission in which frequencies produced by amplitude modulation (AM) are symmetrically spaced above and below the carrier frequency and the carrier level is reduced to the lowest practical level, ideally being completely suppressed.

In the DSB-SC modulation, unlike in AM, the wave carrier is not transmitted; thus, much of the power is distributed between the sidebands, which implies an increase of the cover in DSB-SC, compared to AM, for the same power use.

DSB-SC transmission is a special case of double-sideband reduced carrier transmission. It is used for radio data systems. This model is frequently used in Amateur radio voice communications, especially on High-Frequency bands.

 

Spectrum

DSB-SC is basically an amplitude modulation wave without the carrier, therefore reducing power waste, and making it more efficient. This is an increase compared to normal AM transmission (DSB) that has a maximum efficiency of 33.3% since 2/3 of the power is in the carrier which conveys no useful information and both sidebands contain identical copies of the same information. Single Side Band Suppressed Carrier (SSB-SC) is 100% efficient.

 

 

 

 

 

DSB-SC Modulator

DSB-SC is generated by a mixer. In its most common application, two signals are applied to a mixer, and it produces new signals at the sum and difference of the original frequencies. This consists of a message signal multiplied by a carrier signal. The mathematical representation of this process is shown below, where the product-to-sum trigonometric identity is used.

Vmcos(ωmt) X Vccos(ωct) = (VmVc/2) [cos((ωm + ωc)t)  +  cos((ωm - ωc)t)]

                                                                     (Modulated signal)

Where, Vmcos(ωmt) is the message signal

             Vccos(ωct)  is the carrier signal

 

Normal AM modulation vs DSB-SC

Normal AM modulation process is represented as

xAM(t) = Ac[1 + mx(t)]cosꞷct

where m is the modulation index

In case of AM Modulation carrier is modulated by varying amplitude linearly proportional to baseband signal.

 

 

Theoretically, the amplitude-modulated wave has three frequencies. Those are carrier frequency fc, upper sideband frequency fc + fm, and lower sideband frequency fc - fm. After modulation, this signal in the frequency domain looks like this

 

We know the information is in sidebands. So there is no need to send only carrier frequency when it consumes 50% of the total transmitted power. This system will be more efficient when we send only a single sideband as sidebands containing identical copies of the same information and construct another sideband from the transmitted one. We basically follow this procedure in a single sideband suppressed carrier (SSB-SC) modulation process.

 

Efficiency of DSB-SC modulation

PAM  =  0.5Ac2  +  0.25m2Ac2

Where sidebands contain power 0.25m2Ac2 (say, Psb) and carrier frequency contains power 0.5Ac2 (say Pc).

In the case of DSB-SC we transmit sidebands and suppress the carrier. So, efficiency of a DSB-SC signal is calculated as

ղ = [Psb  / (Pc  +  Psb)]

   = [0.25m2Ac2  / (0.5Ac2  +  0.25m2Ac2)]  <  (1/3)

For AM, less than 33% of the power is in the sidebands. For DSB, 100% of the power is the sidebands.

 

 

 

DSB-SC Detector

For DSBSC, Coherent Demodulation is done by multiplying the DSB-SC signal with the carrier signal (with the same phase as in the modulation process) just like the modulation process. This resultant signal is then passed through a low pass filter to produce a scaled version of the original message signal.

 

(VmVc/2) [cos((ωm + ωc)t)  +  cos((ωm - ωc)t)] X Vc‘ cos(ωct)

= (1/2. Vc. Vc‘)Vm cos(ωmt) +  (1/4. Vc. Vc‘Vm) [cos((ωm + 2ωc)t)  +  cos((ωm - 2ωc)t)]

The equation above shows that by multiplying the modulated signal by the carrier signal, the result is a scaled version of the original message signal plus a second term. Since ωc >> ωm , this second term is much higher in frequency than the original message signal. Once the signal passes through a lowpass filter, the higher frequency component is removed, leaving the original message signal.

 

Q & A and Summary

Q1: What does DSB-SC stand for, and how does it differ from conventional AM?

DSB-SC stands for Double Sideband Suppressed Carrier. Unlike conventional Amplitude Modulation (AM), which transmits the carrier along with the sidebands, DSB-SC suppresses the carrier, transmitting only the sidebands. This results in more power efficiency and bandwidth utilization.

Q2: What is the mathematical expression for a DSB-SC modulated signal?

The DSB-SC signal \( s(t) \) is given by:
\( s(t) = A_c m(t) \cos(2\pi f_c t) \)
where \( A_c \) is the carrier amplitude, \( m(t) \) is the message signal, and \( f_c \) is the carrier frequency.

Q3: Why is the carrier not transmitted in DSB-SC?

The carrier does not contain useful information. Transmitting it would waste power. By suppressing the carrier, DSB-SC systems become more energy-efficient.

Q4: Explain the frequency domain representation of DSB-SC.

The frequency-domain representation is:
\( S(j\omega) = \frac{1}{2} \left[ M(j(\omega - \omega_c)) + M(j(\omega + \omega_c)) \right] \)
This shows that the message spectrum is shifted to both \( +\omega_c \) and \( -\omega_c \), creating upper and lower sidebands.

Q5: What is the role of a coherent detector in DSB-SC demodulation?

A coherent detector multiplies the received signal with a locally generated carrier that is in phase and frequency sync with the original. Any phase or frequency mismatch results in distortion of the demodulated signal.

Q6: What distortion occurs if synchronization is not perfect during demodulation?

Imperfect synchronization leads to phase or frequency mismatch. This results in signal distortion and loss of message fidelity during recovery.

Q7: Why is a Low Pass Filter (LPF) used after coherent detection?

After coherent detection, the product contains both baseband and high-frequency components (at double the carrier frequency). The LPF removes high-frequency components, isolating the original baseband message.

Q8: What happens in the frequency spectrum when a message signal is modulated using DSB-SC?

The spectrum of the message signal \( M(j\omega) \) is shifted to center around \( +\omega_c \) and \( -\omega_c \). This produces two symmetrical sidebands (USB and LSB) and the carrier is not present.

Q9: Can DSB-SC be demodulated without using the exact same carrier frequency?

No, DSB-SC requires exact carrier frequency and phase for coherent demodulation. Any deviation leads to inaccurate recovery of the message signal.

Q10: What are the key advantages and disadvantages of DSB-SC?

Advantages: Efficient use of power, better bandwidth usage.
Disadvantages: Requires complex coherent detection and exact carrier synchronization.


Further Reading

  1. Comparisons between DSB-SC and SSB-SC
  2. SSB-SC Modulation and Demodulation 
  3. DSB-SC in MATLAB

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

OFDM Symbols and Subcarriers Explained

This article explains how OFDM (Orthogonal Frequency Division Multiplexing) symbols and subcarriers work. It covers modulation, mapping symbols to subcarriers, subcarrier frequency spacing, IFFT synthesis, cyclic prefix, and transmission. Step 1: Modulation First, modulate the input bitstream. For example, with 16-QAM , each group of 4 bits maps to one QAM symbol. Suppose we generate a sequence of QAM symbols: s0, s1, s2, s3, s4, s5, …, s63 Step 2: Mapping Symbols to Subcarriers Assume N sub = 8 subcarriers. Each OFDM symbol in the frequency domain contains 8 QAM symbols (one per subcarrier): Mapping (example) OFDM symbol 1 → s0, s1, s2, s3, s4, s5, s6, s7 OFDM symbol 2 → s8, s9, s10, s11, s12, s13, s14, s15 … OFDM sym...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Bartlett Method in MATLAB

Steps to calculate Spectral power density using Bartlett Method 'M' is the length of each segment for the Bartlett method, set to 100 samples. 'K' is the number of segments obtained by dividing the total number of samples N by the segment length 'M'. psd_bartlett_broadband is initialized to store the accumulated periodogram. For each segment k, x_k extracts the k-th segment of the broadband signal. P_k computes the periodogram of the k-th segment using the FFT. The periodograms are accumulated and averaged over all segments. The PSD is plotted in dB/Hz by converting the power values to decibels using 10 * log10.   MATLAB Script clc; clear; close all; % Parameters fs = 1000; % Sampling frequency t = 0:1/fs:1-1/fs; % Time vector N = length(t); % Number of samples % Generate synthetic broadband ARMA process arma_order = [2, 2]; % ARMA(p,q) order a = [1, -0.75, 0....

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. Coherence bandwidth is inversely related to the delay spread time (e.g., RMS delay spread). The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel due to multipath. The two are related by the following approximation: Coherence Bandwidth ≈ 1/(delay spread time) Or, Coherence Bandwidth ≈ 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, if the root-mean-square delay spread is 500 ns (i.e., {1/(2*10^6)} seconds), the coherence bandwidth is approximately 2 MHz (1 / 500e-9) in ...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Question With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Question With Answer Key Download Pdf [December 2019] UGC Net Elec...

Pulse Position Modulation (PPM)

Pulse Position Modulation (PPM) is a type of signal modulation in which M message bits are encoded by transmitting a single pulse within one of 2ᴹ possible time positions within a fixed time frame. This process is repeated every T seconds , resulting in a data rate of M/T bits per second . PPM is a form of analog modulation where the position of each pulse is varied according to the amplitude of the sampled modulating signal , while the amplitude and width of the pulses remain constant . This means only the timing (position) of the pulse carries the information. PPM is commonly used in optical and wireless communications , especially where multipath interference is minimal or needs to be reduced. Because the information is carried in timing , it's more robust in some noisy environments compared to other modulation schemes. Although PPM can be used for analog signal modulation , it is also used in digital communications where each pulse position represents a symbol or bit...