Skip to main content

DSB-SC Modulation and Demodulation


 

Double-sideband suppressed-carrier transmission (DSB-SC) is transmission in which frequencies produced by amplitude modulation (AM) are symmetrically spaced above and below the carrier frequency and the carrier level is reduced to the lowest practical level, ideally being completely suppressed.

In the DSB-SC modulation, unlike in AM, the wave carrier is not transmitted; thus, much of the power is distributed between the sidebands, which implies an increase of the cover in DSB-SC, compared to AM, for the same power use.

DSB-SC transmission is a special case of double-sideband reduced carrier transmission. It is used for radio data systems. This model is frequently used in Amateur radio voice communications, especially on High-Frequency bands.

 

Spectrum

DSB-SC is basically an amplitude modulation wave without the carrier, therefore reducing power waste, and making it more efficient. This is an increase compared to normal AM transmission (DSB) that has a maximum efficiency of 33.3% since 2/3 of the power is in the carrier which conveys no useful information and both sidebands contain identical copies of the same information. Single Side Band Suppressed Carrier (SSB-SC) is 100% efficient.

 

 

 

 

 

DSB-SC Modulator

DSB-SC is generated by a mixer. In its most common application, two signals are applied to a mixer, and it produces new signals at the sum and difference of the original frequencies. This consists of a message signal multiplied by a carrier signal. The mathematical representation of this process is shown below, where the product-to-sum trigonometric identity is used.

Vmcos(ωmt) X Vccos(ωct) = (VmVc/2) [cos((ωm + ωc)t)  +  cos((ωm - ωc)t)]

                                                                     (Modulated signal)

Where, Vmcos(ωmt) is the message signal

             Vccos(ωct)  is the carrier signal

 

Normal AM modulation vs DSB-SC

Normal AM modulation process is represented as

xAM(t) = Ac[1 + mx(t)]cosêž·ct

where m is the modulation index

In case of AM Modulation carrier is modulated by varying amplitude linearly proportional to baseband signal.

 

 

Theoretically, the amplitude-modulated wave has three frequencies. Those are carrier frequency fc, upper sideband frequency fc + fm, and lower sideband frequency fc - fm. After modulation, this signal in the frequency domain looks like this

 

We know the information is in sidebands. So there is no need to send only carrier frequency when it consumes 50% of the total transmitted power. This system will be more efficient when we send only a single sideband as sidebands containing identical copies of the same information and construct another sideband from the transmitted one. We basically follow this procedure in a single sideband suppressed carrier (SSB-SC) modulation process.

 

Efficiency of DSB-SC modulation

PAM  =  0.5Ac2  +  0.25m2Ac2

Where sidebands contain power 0.25m2Ac2 (say, Psb) and carrier frequency contains power 0.5Ac2 (say Pc).

In the case of DSB-SC we transmit sidebands and suppress the carrier. So, efficiency of a DSB-SC signal is calculated as

Õ² = [Psb  / (Pc  +  Psb)]

   = [0.25m2Ac2  / (0.5Ac2  +  0.25m2Ac2)]  <  (1/3)

For AM, less than 33% of the power is in the sidebands. For DSB, 100% of the power is the sidebands.

 

 

 

DSB-SC Detector

For DSBSC, Coherent Demodulation is done by multiplying the DSB-SC signal with the carrier signal (with the same phase as in the modulation process) just like the modulation process. This resultant signal is then passed through a low pass filter to produce a scaled version of the original message signal.

 

(VmVc/2) [cos((ωm + ωc)t)  +  cos((ωm - ωc)t)] X Vc‘ cos(ωct)

= (1/2. Vc. Vc‘)Vm cos(ωmt) +  (1/4. Vc. Vc‘Vm) [cos((ωm + 2ωc)t)  +  cos((ωm - 2ωc)t)]

The equation above shows that by multiplying the modulated signal by the carrier signal, the result is a scaled version of the original message signal plus a second term. Since ωc >> ωm , this second term is much higher in frequency than the original message signal. Once the signal passes through a lowpass filter, the higher frequency component is removed, leaving the original message signal.

 

Further Reading

  1. Comparisons between DSB-SC and SSB-SC
  2. SSB-SC Modulation and Demodulation 
  3. DSB-SC in MATLAB

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB Code for Channel Impulse Response

MATLAB Code for Channel Impulse Response (CIR) 📘 Overview & Theory 🧮 MATLAB Code 🤔 How does CIR affect the signal? 🛠️ How to Mitigate Channel Distortion? 📚 Further Reading MATLAB Script for Simulating CIR This MATLAB script allows you to generate and visualize the channel impulse response (CIR). You can choose to create a 'random' multi-path channel or a near-'ideal' single-path channel to understand their distinct characteristics. % User input for choosing the type of impulse response response_type = input('Enter "random" for random channel impulse response or "ideal" for near-ideal impulse response: ', 's'); if strcmpi(response_type, 'random') % Parameters for random impulse response num_taps = input('Enter the number of taps: '); % Number of taps in the channel d...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the vari...