Fourier Transform of a delta function

If x(t) = \( \delta(t) \), then Fourier transform,
X(\( \omega \)) = \( \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t} dt \)
= \( \int_{-\epsilon}^{\epsilon} \delta(t)e^{-j\omega t} dt \)
= \( \int_{-\epsilon}^{\epsilon} \delta(t)e^{-j\omega 0} dt \)
= 1
Thus, the Fourier transform of a delta/impulse is a constant equal to 1, independent of frequency. Remember that derivation used the shifting property of the impulse to eliminate the integral.

-
Fourier transform of a unit step function

\( \gamma(t) \) = 0 for t < 0
= 1 for t \( \ge \) 1
We know that a unit-step function is an integration of a delta function. So for a unit step function,
\( \gamma(t) \) = \( \int \delta(t) dt \)
So, X(\( \omega \)) = \( \frac{1}{j\omega} F(\delta(t)) + \pi F(\delta(t))\delta(\omega) \)
[See the property of integration above]
= \( \frac{1}{j\omega} + \pi\delta(\omega) \) [as F(\( \delta(t) \)) = 1]
When a function (i.e., x(t)) is not an energy function and hence the Fourier transform of [\( \int x(t) dt \)] includes an impulse function.

-
Fourier Transform of a rectangular / unit pulse function
A pulse function can be represented as,
x(t)=Î (t) = \( \gamma(t + \frac{1}{2}) - \gamma(t - \frac{1}{2}) \)

For a function rect(t) = Î (t) = 1 for |t| \( \le \frac{1}{2} \)
= 0 otherwise
Given that
x(t) = Î (t)
Hence from the definition of the Fourier transform we have
F (Î (t)) = X(\( \omega \)) = \( \int_{-\infty}^{\infty} \Pi(t)e^{-j\omega t} dt \)
= \( \int_{-1/2}^{1/2} e^{-j\omega t} dt \) [as Î (t) = 1 for |t| \( \le \frac{1}{2} \)]
= [(e –jωt)/-jω]-1/21/2
= [e –jω/2 - e jω/2] / -jω
= [e jω/2 - e -jω/2] / jω
= 2/ω . {[e jω/2 - e -jω/2] / 2j}
= 2/ω . sin(ω/2)
= {sin(ω/2) / (ω/2)}
= {sin(\( \pi \)(ω/2\( \pi \))) / (\( \pi \)(ω/2\( \pi \)))}
= sinc(ω/2\( \pi \))
For the above case, the rectangular function has a pulse width value of 1 over the interval of [-½, ½]; 0 otherwise.
Now we’ll discuss a rectangular pulse that has a width of T
Then, rect(t/T) = Î (t/T) = 1 for |t| \( \le \) T/2
= 0 otherwise
Given that
x(t/T) = Î (t/T)
Hence from the definition of the Fourier transform we have
F (Î (t/T)) = \( \int_{-\infty}^{\infty} \Pi(t/T)e^{-j\omega t} dt \)
= \( \int_{-T/2}^{T/2} e^{-j\omega t} dt \) [as Î (t/T) = 1 for |t| \( \le \) T/2]
= [(e –jωt)/-jω]-T/2T/2
= [e –jωT/2 - e jωT/2] / -jω
= [e jωT/2 - e -jωT/2] / jω
= 2/ω . {[e jωT/2 - e -jωT/2] / 2j}
= 2/ω . sin(ω(T/2))
= {sin(ω(T/2)) / (ω/2)}
= {sin(\( \pi \)ωT/2\( \pi \))) / (\( \pi \)ω/2\( \pi \))}
= {sin(\( \pi \)ωT/2\( \pi \))) / (\( \pi \)ωT/2\( \pi \))}.T
= T. sinc(ωT/2\( \pi \))

-
Fourier Transform of a unit triangle pulse

A unit triangle pulse is simply the convolution of a unit pulse function with itself.
Here, Λ(t) = Π(t) * Π(t)
[Î (t) is a unit pulse function & ‘*’ denotes convolution]
So, Λ(\( \omega \)) = sinc(ω/2\( \pi \)) . sinc(ω/2\( \pi \)) = sinc2(ω/2\( \pi \))

-
Fourier Transform of a Sawtooth function

s(t) = 0, for t < 0 and t > 1
= t, for 0 \( \le \) t \( \le \) 1
We can represent sawtooth as the integral of shifted unit pulse function (to give the ramp) and a negative impulse (delayed by one second) to give the discontinuity at the end of the ramp

s(t) = \( \int_{-\infty}^{t} \Pi(\tau)d\tau - \int_{-\infty}^{t} \delta(\tau-1)d\tau = \int_{-\infty}^{t} y(\tau)d\tau \)
y(t) = \( \Pi(t) - \delta(t-1) \)
Now, we’ve to find the Fourier transform of y(t),
Y(\( \omega \)) = sinc(ω/2\( \pi \))e-jω/2 - e-jω
We can now apply integral property with Y(0) = 0, to find S(\( \omega \))
S(\( \omega \)) = F(\( \int_{-\infty}^{t} y(\tau)d\tau \)) = Y(\( \omega \))/jω - \( \pi \)Y(0)\( \delta \)(0) = Y(\( \omega \))/jω
= {(sinc(ω/2\( \pi \))e-jω/2 - e-jω) / jω}
= {((sin(π . ω/2\( \pi \)) / (π . ω/2\( \pi \)))e-jω/2 - e-jω) / jω}
= (((sin(Ï€ . ω/2\( \pi \)) / (Ï€ . ω/2\( \pi \)))e-jω/2) / jω) – (e-jω / jω)
= (2(sin(ω/2)e-jω/2) / jω2) – (je-jω / j2ω)
= (2((ejω/2 - e-jω/2) / 2j)e-jω/2) / jω2) + (je-jω / ω) [as j2 = -1]
= (((ejω/2 - e-jω/2)e-jω/2) / j2ω2) + (je-jω / ω)
= (((e-jω/2 - ejω/2)e-jω/2) / ω2) + (je-jω / ω)
= (((e-jω/2 - ejω/2)e-jω/2) / ω2) + (je-jω / ω)
= ((((e-jω/2 - ejω/2)e-jω/2) + jωe-jω) / ω2)
= ((e-jω - 1 + jωe-jω) / ω2)
= ((e-jω(1+jω) - 1) / ω2